Pretraining Frequency Predicts Compositional Generalization of CLIP on Real-World Tasks

Abstract

We investigate the success conditions for compositional generalization of CLIP models on real-world data through performance prediction. Prior work shows that CLIP requires exponentially more pretraining data for linear performance gains on individual concepts. This sample-inefficient scaling could be mitigated if CLIP systematically understood new inputs as compositions of learned components, allowing rare observation to be mapped to common concepts. To explore CLIP’s compositional generalization ability, we filter retrieval corpora for samples with object combinations not present in the pretraining corpus. We show that CLIP’s performance on these samples can be accurately predicted from the pretraining frequencies of individual objects. Our findings demonstrate that CLIP learns to disentangle objects observed in its pretraining data and can recompose them straightforwardly. Additionally, we are the first to show how this ability scales with pretraining data. For data curation in practice, our results suggest that balancing object occurrences improves generalization, which should benefit CLIP’s efficiency and accuracy without scaling data volume.

Wieland Brendel
Wieland Brendel
Principal Investigator (PI)

Wieland Brendel received his Diploma in physics from the University of Regensburg (2010) and his Ph.D. in computational neuroscience from the École normale supérieure in Paris (2014). He joined the University of Tübingen as a postdoctoral researcher in the group of Matthias Bethge, became a Principal Investigator and Team Lead in the Tübingen AI Center (2018) and an Emmy Noether Group Leader for Robust Machine Learning (2020). In May 2022, Wieland joined the Max-Planck Institute for Intelligent Systems as an independent Group Leader and is now a Hector-endowed Fellow at the ELLIS Institute Tübingen (since September 2023). He received the 2023 German Pattern Recognition Award for his substantial contributions on robust, generalisable and interpretable machine vision. Aside of his research, Wieland co-founded a nationwide school competition (bw-ki.de) and a machine learning startup focused on visual quality control.