Inducing a human-like shape bias leads to emergent human-level distortion robustness in CNNs

Abstract

Convolutional neural networks (CNNs) have been proposed as computational models for (rapid) human object recognition and the (feedforward-component) of the primate ventral stream. The usefulness of CNNs as such models obviously depends on the degree of similarity they share with human visual processing. Here we investigate two major differences between human vision and CNNs, first distortion robustness—CNNs fail to cope with novel, previously unseen distortions—and second texture bias—unlike humans, standard CNNs seem to primarily recognise objects by texture rather than shape. During our investigations we discovered an intriguing connection between the two: inducing a human-like shape bias in CNNs makes them inherently robust against many distortions. First we show that CNNs cope with novel distortions worse than humans even if many distortion-types are included in the training data …

Wieland Brendel
Wieland Brendel
Principal Investigator (PI)

Wieland Brendel received his Diploma in physics from the University of Regensburg (2010) and his Ph.D. in computational neuroscience from the École normale supérieure in Paris (2014). He joined the University of Tübingen as a postdoctoral researcher in the group of Matthias Bethge, became a Principal Investigator and Team Lead in the Tübingen AI Center (2018) and an Emmy Noether Group Leader for Robust Machine Learning (2020). In May 2022, Wieland joined the Max-Planck Institute for Intelligent Systems as an independent Group Leader and is now a Hector-endowed Fellow at the ELLIS Institute Tübingen (since September 2023). He received the 2023 German Pattern Recognition Award for his substantial contributions on robust, generalisable and interpretable machine vision. Aside of his research, Wieland co-founded a nationwide school competition (bw-ki.de) and a machine learning startup focused on visual quality control.