Foolbox v0. 8.0: A python toolbox to benchmark the robustness of machine learning models

Abstract

Even todays most advanced machine learning models are easily fooled by almost imperceptible perturbations of their inputs. Foolbox is a new Python package to generate such adversarial perturbations and to quantify and compare the robustness of machine learning models. It is build around the idea that the most comparable robustness measure is the minimum perturbation needed to craft an adversarial example. To this end, Foolbox provides reference implementations of most published adversarial attack methods alongside some new ones, all of which perform internal hyperparameter tuning to find the minimum adversarial perturbation. Additionally, Foolbox interfaces with most popular deep learning frameworks such as PyTorch, Keras, TensorFlow, Theano and MXNet and allows different adversarial criteria such as targeted misclassification and top-k misclassification as well as different distance measures …

Wieland Brendel
Wieland Brendel
Principal Investigator (PI)

Wieland Brendel received his Diploma in physics from the University of Regensburg (2010) and his Ph.D. in computational neuroscience from the École normale supérieure in Paris (2014). He joined the University of Tübingen as a postdoctoral researcher in the group of Matthias Bethge, became a Principal Investigator and Team Lead in the Tübingen AI Center (2018) and an Emmy Noether Group Leader for Robust Machine Learning (2020). In May 2022, Wieland joined the Max-Planck Institute for Intelligent Systems as an independent Group Leader and is now a Hector-endowed Fellow at the ELLIS Institute Tübingen (since September 2023). He received the 2023 German Pattern Recognition Award for his substantial contributions on robust, generalisable and interpretable machine vision. Aside of his research, Wieland co-founded a nationwide school competition (bw-ki.de) and a machine learning startup focused on visual quality control.