Abstract
A recent paper suggests that Deep Neural Networks can be protected from gradient-based adversarial perturbations by driving the network activations into a highly saturated regime. Here we analyse such saturated networks and show that the attacks fail due to numerical limitations in the gradient computations. A simple stabilisation of the gradient estimates enables successful and efficient attacks. Thus, it has yet to be shown that the robustness observed in highly saturated networks is not simply due to numerical limitations.

Principal Investigator (PI)
Wieland Brendel received his Diploma in physics from the University of Regensburg (2010) and his Ph.D. in computational neuroscience from the École normale supérieure in Paris (2014). He joined the University of Tübingen as a postdoctoral researcher in the group of Matthias Bethge, became a Principal Investigator and Team Lead in the Tübingen AI Center (2018) and an Emmy Noether Group Leader for Robust Machine Learning (2020). In May 2022, Wieland joined the Max-Planck Institute for Intelligent Systems as an independent Group Leader and is now a Hector-endowed Fellow at the ELLIS Institute Tübingen (since September 2023). He received the 2023 German Pattern Recognition Award for his substantial contributions on robust, generalisable and interpretable machine vision. Aside of his research, Wieland co-founded a nationwide school competition (bw-ki.de) and a machine learning startup focused on visual quality control.