Abstract
We construct twisted instanton solutions of CPn models. Generically a charge-k instanton splits into k(n+1) well-separated and almost static constituents carrying fractional topological charges and being ordered along the noncompact direction. The locations, sizes and charges of the constituents are related to the moduli parameters of the instantons. We sketch how solutions with fractional total charge can be obtained. We also calculate the fermionic zero modes with quasi-periodic boundary conditions in the background of twisted instantons for minimally and supersymmetrically coupled fermions. The zero modes are tracers for the constituents and show a characteristic hopping. The analytical findings are compared to results extracted from Monte Carlo generated and cooled configurations of the corresponding lattice models. Analytical and numerical results are in full agreement and it is demonstrated that the …

Principal Investigator (PI)
Wieland Brendel received his Diploma in physics from the University of Regensburg (2010) and his Ph.D. in computational neuroscience from the École normale supérieure in Paris (2014). He joined the University of Tübingen as a postdoctoral researcher in the group of Matthias Bethge, became a Principal Investigator and Team Lead in the Tübingen AI Center (2018) and an Emmy Noether Group Leader for Robust Machine Learning (2020). In May 2022, Wieland joined the Max-Planck Institute for Intelligent Systems as an independent Group Leader and is now a Hector-endowed Fellow at the ELLIS Institute Tübingen (since September 2023). He received the 2023 German Pattern Recognition Award for his substantial contributions on robust, generalisable and interpretable machine vision. Aside of his research, Wieland co-founded a nationwide school competition (bw-ki.de) and a machine learning startup focused on visual quality control.