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Abstract

In today’s era, whatever we can measure at scale,
we can optimize. So far, measuring the in-
terpretability of units in deep neural networks
(DNNs) for computer vision still requires direct
human evaluation and is not scalable. As a result,
the inner workings of DNNs remain a mystery
despite the remarkable progress we have seen in
their applications. In this work, we introduce the
first scalable method to measure the per-unit in-
terpretability in vision DNNs. This method does
not require any human evaluations, yet its pre-
diction correlates well with existing human in-
terpretability measurements. We validate its pre-
dictive power through an interventional human
psychophysics study. We demonstrate the use-
fulness of this measure by performing previously
infeasible experiments: (1) A large-scale inter-
pretability analysis across more than 70 million
units from 835 computer vision models, and (2)
an extensive analysis of how units transform dur-
ing training. We find an anticorrelation between a
model’s downstream classification performance
and per-unit interpretability, which is also observ-
able during model training. Furthermore, we see
that a layer’s location and width influence its in-
terpretability.

1. Introduction

With the arrival of the first non-trivial neural networks, re-
searchers got interested in understanding their inner work-
ings (Krizhevsky et al., 2012; Mahendran & Vedaldi, 2015).
For one, this can be motivated by scientific curiosity; for
another, a better understanding might lead to building more
reliable, efficient, or fairer models. While the performance
of machine learning models has seen a remarkable improve-
ment over the last few years, our understanding of informa-

"Max Planck Institute for Intelligent Systems, Tiibingen
AI Center, Tiibingen, Germany >Stanford University, Stan-
ford, USA. Correspondence to: Roland S. Zimmermann <re-
search@rzimmermann.com>>.

Online version, code and interactive visualizations available at:
brendel-group.github.io/mis

tion processing has progressed more slowly. Nevertheless,
understanding how complex models — e.g., language mod-
els (Bricken et al., 2023) or vision models (Olah et al., 2017;
Zimmermann et al., 2023) — work is still an active and
growing field of research, coined mechanistic interpretabil-
ity (Olah, 2022). A common approach in this field is to
divide a network into atomic units, hoping they are easier to
comprehend. Here, atomic units might refer to individual
neurons or channels of (convolutional) layers (Olah et al.,
2017), or general vectors in feature space (Elhage et al.,
2022; Klindt et al., 2023). Besides this approach, mecha-
nistic interpretability also includes the detection of neural
circuits (Cammarata et al., 2020; Elhage et al., 2022) or
analysis of global network properties (Nanda et al., 2023).

The goal of understanding the inner workings of a neural
network is inherently human-centric: Irrespective of what
tools have been used, in the end, humans should have a
better comprehension of the network. However, human eval-
uations are time-consuming and costly due to their reliance
on human labor (Zimmermann et al., 2023). This results
in slower research progress, as validating novel hypotheses
takes longer.

Removing the need for human labor by automating the
interpretability evaluation can open up multiple high-impact
research directions: One benefit is that it enables the creation
of more interpretable networks by explicitly optimizing for
interpretability — after all, what we can measure at scale, we
can optimize. Moreover, it allows more efficient research on
explanation methods and might lead to an increased overall
understanding of neural networks. While efforts to build
such measures for language models exist (Bills et al., 2023),
there is no common approach yet for vision models.

The present work is the first to introduce a fully automated
interpretability measure (see Fig. 1A & B): the Machine
Interpretability Score (MIS). By leveraging the latest ad-
vances in image similarity functions aligned with human
perception, we obtain a measure that is strongly predictive
of human-perceived interpretability (see Fig. 1C). We verify
our measure through both correlational and interventional
experiments. By removing the need for human labor, we
can scale existing evaluations up by multiple orders of mag-
nitude. Finally, this work demonstrates potential workflows
and use cases of our MIS.
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Fig. 1: Definition of the Machine Interpretability Score. A. We build on top of the established task definition proposed
by Borowski et al. (2021) to quantify the per-unit interpretability via human psychophysics experiments. The task quantifies
how well participants understand the sensitivity of a unit by asking them to match strongly activating query images to
strongly activating visual explanations of the unit. See Fig. 13 for examples. B. Crucially, we remove the need for humans
and fully automate the evaluation: We pass the explanations and query images through a feature encoder to compute
pair-wise image similarities (DreamSim) before using a (hard-coded) binary classifier to solve the underlying task. Finally,
the Machine Interpretability Score (MIS) is the average of the predicted probability of the correct choice over IV tasks. C.
The MIS proves to be highly correlated with human interpretability ratings and allows fast evaluations of new hypotheses.

2. Related Work

Mechanistic Interpretability While the overall field of
explainable AI (XAI) tries to increase our understanding of
neural networks, multiple subbranches with different foci ex-
ist (Gilpin et al., 2018). One of these branches, mechanistic
interpretability, hopes to improve our understanding of neu-
ral networks by understanding their building blocks (Olah,
2022). An even more fine-grained branch aims to interpret
individual units of vision models (Bau et al., 2017; Zhou
et al., 2018; Bau et al., 2020; Morcos et al., 2018; Olah et al.,
2017). We focus exclusively on this branch of research in
the present work. This line of research for artificial neural
networks was, arguably, inspired by similar efforts in neu-
roscience for biological neural networks (Hubel & Wiesel,
1962; Barlow, 1972; Quiroga et al., 2005).

Different studies set out to understand the behavior and
sensitivity of individual units of vision networks — here, a
unit can, e.g., be a channel in a convolutional neural net-
work (CNN) or a neuron in a multilayer perceptron (MLP).
With the recent progress in vision-language modeling, a
few approaches started using textual descriptions of a unit’s
behavior (Hernandez et al., 2022; Kalibhat et al., 2023).
However, the majority still uses visual explanations which
are either synthesized by performing activation maximiza-
tion through, e.g., gradient ascent (Olah et al., 2017; Erhan
et al., 2009; Mahendran & Vedaldi, 2015; Nguyen et al.,
2014; Mordvintsev et al., 2015; Yosinski et al., 2015; Olah
et al., 2017; Nguyen et al., 2017), or strongly activating
dataset examples (Olah et al., 2017; Borowski et al., 2021).

With the onset of large language models (LLMs) and the
increasing interest in them, there is also now an increasing
interest in mechanistic interpretability of them (e.g., Elhage
et al., 2021; Olsson et al., 2022; Bricken et al., 2023).

Quantifying Interpretability Rigorous evaluations, in-
cluding falsifiable hypothesis testing, are critical for re-
search on interpretability methods (Leavitt & Morcos, 2020).
This also encompasses the need for human-centric evalua-
tions (Borowski et al., 2021; Kim et al., 2022).

Nevertheless, such human-centric evaluations of inter-
pretability methods are only available in some sub-fields.
Specifically for the type of interpretability we are concerned
about in this work, i.e., the per-unit interpretability of vi-
sion models, two methods for quantifying the helpfulness of
explanations to humans were introduced before: Borowski
et al. (2021) presented a two-alternative-forced-choice (2-
AFC) psychophysics task that requires participants to de-
termine which of two images elicits higher activation of
the unit in question, given visual explanations (i.e., images
that strongly activate or deactivate the unit, see Fig. 1A) of
the unit’s behavior. Zimmermann et al. (2021) extended
this paradigm to quantify how well participants can predict
the influence of interventions in the form of occlusions in
images. While these studies used their paradigms to eval-
uate the usefulness of different interpretability methods,
Zimmermann et al. (2023) leveraged them to compare the
interpretability of multiple models. Due to the reliance on
human experiments, they could only probe the interpretabil-
ity of 767 units from nine models. We now automatize this
evaluation to scale it up by multiple orders of magnitude to
more than 70 million units across 835 models.

Automating Interpretability Research To increase the
efficiency of interpretability research and scale it to large
modern-day networks, the concept of automated inter-
pretability was proposed, first in the domain of natural lan-
guage processing (Bills et al., 2023). This approach uses
an LLM to generate textual descriptions of the behavior
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of units in another LLM. Follow-up work by Huang et al.
(2023), however, pointed out potential problems regarding
the correctness of the explanations. To benchmark future
fully automated interpretability tools, acting as independent
agents, Schwettmann et al. (2023) introduced a synthetic
benchmark suite inspired by the behavior of neural networks.
In computer vision, there are also efforts to automate inter-
pretability research (Hernandez et al., 2022; Zimmermann
etal., 2023). Hernandez et al. (2022) and Oikarinen & Weng
(2022) map visual to textual explanations of a unit’s behav-
ior using automated tools, hoping to increase the efficiency
of evaluations. Zimmermann et al. (2023) introduced the
ImageNet Mechanistic Interpretability (IMI) dataset, con-
taining per-unit interpretability annotations from humans
for 767 units, meant to foster research on automating inter-
pretability evaluations.

3. Method

We now introduce our fully automated interpretability
measure, Machine Interpretability Score (MIS), visualized
in Fig. 1. Borowski et al. (2021) proposed a setup that
allows quantifying how well humans can infer the sensitiv-
ity of a unit in a vision model, e.g., a channel in a CNN,
commonly averaged over space, or neuron in an MLP, from
explanations: They leverage a 2-AFC task design in a psy-
chophysics experiment (see left side of Fig. 1) to measure
how well humans understand a unit by probing how well
they can predict which of two extremely activating (query)
images yields a higher activation, after seeing visual expla-
nations. Specifically, two sets of explanations are displayed:
highly and weakly activating images, called positive and
negative explanations, respectively. See Appx. A.1 for a
more detailed summary of the task. We build on top of this
paradigm but replace human participants with machines,
resulting in a fully automated interpretability metric that
requires no humans.

Definition of the Machine Interpretability Score Let
T denote the space of valid input images for a model. For
a specific explanation method and a unit in question, we
denote the unit’s positive and negative visual explanations as
sets of images £T C 7 and £~ C T, respectively. Further,
let QT C Z and Q~ C 7 be the sets of query images with
the most extreme (positive and negative) activations.

The task by Borowski et al. (2021) can now be expressed as:
Given explanations £* and £~ and two queries g7 € Q7
and q~ € Q~, which of the two queries matches £+ and
which £~ more closely? An intuitive way to solve this
binary decision task is to compare each query with every
explanation and to match the query images to the sets of
explanations based on the similarities of the images.

To formalize this, we introduce a perceptual (image) similar-

ity function f : Z x Z — R computing the scalar similarity
of two images (Zhang et al., 2018), and an aggregation func-
tion a : RX — R reducing a set of K similarities to a single
one. This allows us to define the function s : Z x TK — R
that quantifies the similarity of a single query image to a set
of explanations:

s(@,€)=a({flae)|ecf}). M

To decide whether a single query image is more likely to
be the positive one, we can compute whether it is more
similar to the positive than the negative explanations. We
can compute this now for both the positive and the negative
query images and get:

A+(q+ag+757):S(q+75+)75(q+757)7 (2)
A_(a,E7,67)=5(a7,&") =s(@,E7). ()

The classification problem will be solved correctly if the
similarity of q™ to £ relative to £~ is stronger than those
of q~. This means we can define the probability of solving
the binary classification problem correctly as

plat,a . &5 67) = o(a- (Ay(am e, e)

“

_A*(q_7 g+7 g_)))
where o denotes the sigmoid function and « is a free param-
eter to calibrate the classifier’s confidence.

We define the Machine Interpretability Score (MIS) as the
predicted probability of making the right choice, averaged
over N tasks for the same unit. Across these different tasks,
the query images g™, g~ vary to cover a wider range of the
unit’s behavior. If the explanation method used is stochastic,
it is advisable to also average over different explanations:

N
1 + gq- £+t -
MIS = N;p(qi a4, &5 ED). )

Note that the MIS is not a general property of a unit but de-
pends on the method used for generating explanations. One
might define a general score by computing the maximum
MIS over multiple explanation methods.

Choice of Hyperparameters. We use the current state-of-
the-art perceptual similarity, DreamSim (Fu et al., 2023), as
f- See Appx. B for a sensitivity study on this choice. We
use the mean to aggregate the distances between a query
image and multiple explanations to a single scalar, i.e.,
a(xy,...,xx) =1/K Zf( x;. To choose o, we use the in-
terpretability annotations of IMI (Zimmermann et al., 2023):
We optimize o over a randomly chosen subset of just 5% of
the annotated units to approximately match the value range
of human interpretability scores, resulting in « = 0.16.
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Note that « is, in fact, the only free parameter of our metric,
resulting in very low chances of overfitting the metric to the
IMI dataset. We use the same strategy as Borowski et al.
(2021); Zimmermann et al. (2021) and Zimmermann et al.
(2023) for generating new tasks (see Appx. A.2). As they
used up to 20 tasks per unit, we average over N = 20. See
Appx. C for a sensitivity study.

4. Results

This section is structured into two parts: First, we validate
our Machine Interpretability Score (MIS) by showing that it
is well correlated with existing interpretability annotations.
Then, we demonstrate what type of experiments become fea-
sible by having access to such an automated interpretability
measure. Our experiments use the best-working — accord-
ing to human judgements (Borowski et al., 2021) — visual
explanation method, dataset examples, for computing the
MIS. We demonstrate the applicability of our method to
other interpretability methods (e.g., feature visualizations)
in Appx. D. Note that different explanation methods might
require different hyperparameters for computing the MIS.
Both query images and explanations are chosen from the
training set of ImageNet-2012 (Russakovsky et al., 2015).
When investigating layers whose feature maps have spatial
dimensions, we consider the spatial mean over a channel as
one unit (e.g., Borowski et al., 2021). We ignore units with
constant activations from our analysis as there is no behavior
to understand (see Appx. E for details). The code for all
experiments can be found at [URL included in camera-ready
version].

4.1. Validating the Machine Interpretability Score

We validate our MIS measure by using the interpretability
annotations in the IMI dataset (Zimmermann et al., 2023),
which will be referred to as Human Interpretability Scores
(HIS). The per-unit annotations are responses to the 2-AFC
task described in Sec. 3, averaged over ~ 30 participants.
IMI contains scores for a subset of units for nine models.'

4.1.1. MIS EXPLAINS EXISTING DATA

First, we reproduce the main result of Zimmermann et al.
(2023): A comparison of nine models in terms of their the
per-unit interpretability. We plot the HIS and MIS values
(averaged over all units in a model) in Fig. 2 and find very
strong correlations (Pearson’s r = 0.98 and Spearman’s r =
0.94). Reproducing the model ranking is strong evidence
for the validity of the metric, as no information about these
rankings was explicitly used to create our new measure.

!Zimmermann et al. (2023) investigate nine different models
but test two of them in multiple settings, resulting in 14 distinct
experimental conditions to compare.

Next, we can zoom in and look at individual units instead of
per-model averages. Fig. 3 shows MIS and HIS for all units
of IMI. The left figure clearly shows a strong correlation
(Pearson’s and Spearman’s » = 0.80). The interpretabil-
ity scores in IMI are a (potentially noisy) estimate over a
finite number of annotators. We estimate the ceiling per-
formance due to noise (sampling 30 trials from a Bernoulli
distribution) to equal a Pearson’s r = 0.82 (see Appx. B for
details). The right figure shows an alternative visualization,
which bins the units according to their MIS and averages the
HIS to reduce this noise — highlighting that the two scores
correlate strongly. We can conclude that the MIS explains
existing interpretability annotations well - both on a per-unit
and on a per-model level.
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Fig. 2: MIS Explains Interpretability Model Rankings.
Our proposed Machine Interpretability Score (MIS) explains
existing interpretability annotations (Human Interpretability
Score, HIS) from IMI (Zimmermann et al., 2023) well: It
reproduces the ranking of models presented in IMI while
being fully automated and not requiring any human labor,
as evident by the strong correlation between MIS and HIS.

4.1.2. MIS MAKES NOVEL PREDICTIONS

While the previous results show a strong relation between
MIS and human-perceived interpretability, they are of a de-
scriptive (correlational) nature. To further test the match
between MIS and HIS, we now turn to a causal (interven-
tional) experiment: Instead of predicting the interpretability
of units after a psychophysics evaluation produced their
human scores, we now compute the MIS before conducting
the psychophysics evaluation. We perform our experiment
for two models: GoogLeNet and a ResNet-50. For each
model, IMI contains interpretability scores for 96 randomly
chosen units. We look at all the units not tested so far and
find the 42 units yielding the highest (Easiest, average of
0.99 for both models) and lowest (Hardest, average of 0.63
and 0.59, respectively) MIS, respectively. Then, we use the
same setup as Zimmermann et al. (2023) and perform a psy-
chophysical evaluation on Amazon Mechanical Turk with
236 participants. We compare the HIS for the random units
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Fig. 3: MIS Explains Per-unit Interpretability Annota-
tions. The proposed MIS does not only explain summary
statistics for an entire model (see Fig. 2) but also individual
per-unit interpretability annotations. The left side shows
the calculated MIS and the recorded HIS for every unit in
IML. For the right side, the data points are grouped by their
MIS into 20 bins of equal count, and the mean and standard
deviation of the HIS are shown (blue). As a guideline, we
display the curve (orange) an ideal metric would produce.

from the IMI dataset and the two newly recorded groups
(easy, hard) of units in Fig. 4. The results are very clear
again: As predicted by the MIS, the HIS is highest for the
easiest and lowest for the hardest units. Further, the HIS
is close to the a priori determined MIS given above. This
demonstrates the strong predictive power of the MIS and its
ability to be used for formulating novel hypotheses.

4.2. Analyzing & Comparing Hundreds of Models

After confirming the validity of the MIS, we now change
gears and show use cases for it, i.e., experiments and anal-
yses that were truly infeasible before due to the high cost,
both time and money, of human evaluations.

4.2.1. COMPARISON OF MODELS

Zimmermann et al. (2023) investigated whether model or
training design choices influence the interpretability of vi-
sion models. Although they invested a considerable amount
of money in this investigation (> 12 000 USD), they could
only compare nine models via a subset of units. We now
scale up this line of work by two orders of magnitude and
investigate all units of 835 models, almost all of which
come from the well-established computer vision library
timm (Wightman, 2019). See Appx. F for a list of models.
Putting this scale into perspective, achieving the same scale
by scaling up previous human psychophysics experiments
would amount to the absurd costs of more than one billion
USD. Following previous work we ignore the first and last
layers of each model (Zimmermann et al., 2023).

When sorting the models according to their average MIS
(Fig. 5) they span a value range of ~ 0.80 — 0.91. The
strongest differences across models are present at the tails
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Fig. 4: MIS Allows Detection of (Non-) Interpretable
Units. We use MIS to perform a causal intervention and de-
termine the least (hardest) and most (easiest) interpretable
units in a GoogLeNet and ResNet-50. We then use the
psychophysics setup of Zimmermann et al. (2023) to mea-
sure their interpretability and compare them to randomly
sampled units. Strikingly, the psychophysics results match
the predicted properties: Units with the lowest MIS have
significantly lower interpretability than random units, which
have significantly lower interpretability than those with the
highest MIS. Errorbars denote the 95 % confidence interval.

of the ranking. Note that GoogLeNet is ranked as the most
interpretable model, resonating with the community’s in-
terest in GoogLeNet as it is widely claimed to be more
interpretable. The shaded area denotes the 5th to 95th per-
centile of the distribution across units. This reveals a strong
difference in the variability of units for different models;
further, as the upper end of the MIS is similar across models
(= 95 %), most of the change in the average score seems to
stem from a change in the lower end, with decreasing width
of the per-unit distribution for higher model rank.

To investigate the difference in how the MIS of units is
distributed between different models, we select 15 exem-
plary models and visualize their per-unit MIS distribution
in Fig. 6. Those models were chosen according to the dis-
tance between 5th and 95th percentile (five with highest,
average, and lowest distance). While models with low and
medium variability have unimodal left-skewed distributions,
the ones with high variability have a rather bimodal distribu-
tion. Note that the distribution’s second, stronger mode has
a similar mean and shape to the overall distribution for mod-
els with low variability. The first mode is placed at a value
range slightly above 0.5, corresponding to the chance level
in the task, indicating mostly uninterpretable units. This
suggests that a subset of uninterpretable units (see Fig. 26
for examples) can explain most of the models’ differences
in average MIS. We analyze this further in Fig. 23, where
we compare the models in terms of their worst units. We
see a similar shape as in Fig. 5, but with a larger value range
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Fig. 5: Comparison of the Average Per-unit MIS for Models. We substantially extend the analysis of Zimmermann
et al. (2023) from a noisy average over a few units for a few models to all units of 835 models. The models are compared
regarding their average per-unit interpretability (as judged by MIS); the shaded area depicts the 5th to 95th percentile over
units. We see that all models fall into an intermediate performance regime, with stronger changes in interpretability at the
tails of the model ranking. Models probed by Zimmermann et al. (2023) are highlighted in red.

used, resulting in stronger model differences.

Variability
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Fig. 6: Distribution of per-unit MIS for Models. Distribu-
tion of the per-unit MIS for 15 models, which were chosen
based on the size of the error bar in Fig. 5: lowest (top row),
medium (middle row), and highest variability (bottom row).
While most models have an unimodal distribution, those
with high variability have a second mode with lower MIS.

Previous work analyzed a potential correlation between in-
terpretability and downstream classification performance.
However, in a limited evaluation, it was found that better
classifiers are not necessarily more interpretable (Zimmer-
mann et al., 2023). A re-evaluation of this question is per-
formed in Fig. 7 and paints an even darker picture: Here,
better performing ImageNet classifiers are less interpretable
(Pearson’s » = —0.5 and Spearman’s » = —0.55).

Among training procedures and architecture, the analyzed
models also differ in the required resolution of their input.
While previous work focused only on models with a sin-
gle resolution (Zimmermann et al., 2023), we can now see
whether the resolution influences interpretability. However,
Fig. 21 suggests that there is no influence.
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Fig. 7: Relation Between ImageNet Accuracy and MIS.
The average per-unit MIS of a model is anticorrelated with
the model’s top-1 ImageNet classification accuracy.

4.2.2. COMPARISON OF LAYERS

Next, we can zoom into the results of Fig. 5 and investigate
whether there are differences between different layers.

First, we are interested in testing whether the layer type is
important, e.g., are convolutional more interpretable than
normalization or linear layers? In Fig. 8, we sort the models
by their average MIS over all layer types but show individual
points for each of the five most common types (Conv, Linear,
BatchNorm, LayerNorm, and GroupNorm). The number
of points per model may vary, as not all models contain
layers of all types. The figure shows a benefit of Conv
over BatchNorm layers, which themselves are better than
LayerNorm layers. Linear layers, if present, outperform
both Batch- and LayerNorm as well as Conv layers. While
the differences are small, they are statistically significant
due to the large number of scores collected (see Fig. 20).

Second, we analyze whether the location of a layer inside a
model plays a role, e.g., are earlier layers more interpretable
than later ones? The average per-unit MIS (for each layer
type) is shown in Fig. 9 as a function of the relative depth
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Fig. 8: Comparison of the Average Per-unit MIS for Different Layer Types and Models. We show the average
interpretability of units from the most common layer types in vision models (BatchNorm, Conv, GroupNorm, LayerNorm,
Linear). We follow Zimmermann et al. (2023) and restrict our analysis of Vision Transformers to the linear layers in each
attention head. While not every layer type is used by every model, we still see some separation between types (see Fig. 20
for significance results): Linear and convolutional layers mostly outperform normalization layers. Models are sorted by

average per-unit interpretability, as in Fig. 5.
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Fig. 9: Deeper Layers are More Interpretable. Average
MIS per layer as a function of the relative depth of the layer
within the network, grouped by layer types. For type, the
values are grouped into 30 bins of equal count based on the
relative depth; values shown correspond to the bin average.

of the layer. A value of zero corresponds to the first and
a value of one to the last layer analyzed. The scores are
averaged in bins of equal count defined by the relative layer
depth to enhance readability. The resulting curves all follow
a similar pattern: They start high, decrease in the first fifth,
then increase steadily until they drop in the last tenth again,
resulting in an almost sinusoidal shape.

Third, it is interesting to probe the influence of the width of
layers on their average interpretability. Based on the super-
position hypothesis (Elhage et al., 2022; Olah et al., 2020;
Arora et al., 2018; Goh, 2016), one might expect wider lay-
ers to be more interpretable as features do not have to form
in superposition (i.e., as polysematic units) but can arise in
a disentangled form (i.e., as monosemantic units). Fig. 10
shows the relation between MIS and relative layer width.
We use the relative rather than the absolute width to reduce
the influence of the overall model and show the results of

Conv
x Ps=0.80
0p=0.83

Linear

0.88 1
0.84 1
BatchNorm
x Ps=0.50
0.82- ' ; . ; Y pp=0.41
0.0 0.2 0.4 0.6 0.8 1.0
Relative Layer Width

Average Per-unit MIS

Fig. 10: Wider Layers are More Interpretable. Aver-
age MIS per layer as a function of the relative width of the
layer compared to all layers of the same type in the net-
work, grouped by layer types. For each type, the values
are grouped into 5 bins of equal count based on the relative
layer width; the values shown correspond to the bin average.

models with different architectures on the same axis. Note
that, nevertheless, there might be other confounding factors
correlated with the width e.g., the layer depth. While we see
moderate correlations for Conv and BatchNorm layers, the
one for Linear layers is much stronger. It is unclear what
causes this difference in behavior. However, we see this as
a hint that one way to increase a model’s interpretability is
to increase the width (and not the number) of layers.

4.3. How Does the MIS Change During Training?

In the last set of experiments, we demonstrate how the MIS
can be used to analyze models in a fine-grained way and
obtain insights into their training dynamics. For this, we
train a ResNet-50 on ImageNet-2012, following the training
recipe A3 of Wightman et al. (2021), for 100 epochs.

Fig. 12 shows how the average per-unit MIS (left) changes
during the training. Notably, the initial MIS (of the un-
trained network) is already substantially above chance level.
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Fig. 11: Change of Interpretability per Layer During Training. To better understand the peak in interpretability after the
first training epoch found in Fig. 12, we display the change in MIS during the first epoch, averaged over each layer. Note
that layers are sorted by depth from left to right, and different colors encode different layer types. While the change in
interpretability is moderately correlated with a layer’s depth, we consistently see big improvements for the last BatchNorm
layer of each block (i.e., BatchNorm-*-*-3). For an extended visualization covering the full training, see Fig. 22.
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Fig. 12: Change of Interpretability During Training.
For a ResNet-50 trained for 100 epochs on ImageNet, we
track the MIS and top-1 accuracy after every epoch (epoch
0 refers to random initialization). While the MIS improves
drastically in the first epoch, it monotonically decreases
during the rest of the training (left). This results in an
antiproportional relation between MIS and accuracy (right).

However, during the first epoch, the MIS still increases dras-
tically to values around 0.93. Then, during the rest of the
training, the score slowly decays. This indicates non-trivial
dynamics of feature learning, which we analyze in Fig. 11.
When showing the MIS as a function of ImageNet top-1
accuracy during training (right), a strong anticorrelation (ig-
noring the first points) becomes evident. This is in line with
Fig. 7, also showing an anticorrelation.

To better understand the dynamics through the training —
most importantly during the first epoch — we zoom in
to find out which units cause this strong change in MIS.
Fig. 11 shows the change in MIS during the first epoch
for each layer separately (ordered by their depth within the
network). Surprisingly, we see that the change in MIS is
dominated by a set of BatchNorm layers, namely the last
ones of each ResNetBlock, whose MIS increases drastically.
Moreover, we detect a small trend of later layers improving
more strongly than earlier ones but generally do not see a
difference between Conv and BatchNorm layers.

5. Conclusion

This paper presented the first fully automated intepretability
metric for vision models: the machine interpretability score

(MIS). We verified its alignment to human interpretability
score (HIS) through both correlational and interventional
experiments. We expect our MIS to enable experiments pre-
viously considered infeasible due to the costly reliance on
human evaluations. To stress this, we demonstrated the met-
ric’s usefulness for formulating and testing new hypotheses
about a network’s behavior through a series of experiments:
Based on the largest comparison of vision models in terms
of their per-unit interpretability so far, we investigated poten-
tial influences on their interpretability, such as layer depth
and width. Most importantly, we find an anticorrelation
between a model’s downstream performance and its per-unit
interpretability. Further, we performed the first detailed
analysis of how the interpretability changes during training.

While this paper considerably advances the state of inter-
pretability evaluations, there are some open questions and
potential future research directions. Most importantly, the
performance of our MIS on a per-unit level is close to the
noise ceiling determined by the limited number of human
interpretability annotations available. This means that future
changes in the MIS measure (e.g., based on other image per-
ceptual similarities) might require additional human labels
to determine the significance of performance improvements.
Additional human labels could also be leveraged to improve
the MIS by following Fu et al. (2023) to fine-tune the im-
age similarity directly on human judgments. In another
direction, using vision language models for computing the
MIS could be interesting as this might, in addition to a nu-
merical score, also provide a textual description of a unit’s
sensitivity (Hernandez et al., 2022). Finding a differentiable
approximation of the MIS will be valuable for explicitly
training models to be interpretable (Zimmermann et al.,
2023). Note that while this paper looked at the interpretabil-
ity of channels and neurons, it can also be used for analyzing
arbitrary directions in activation space. Thus, we expect the
MIS to also be valuable for researchers generally looking
for more interpretable representations of (artificial) neural
activations (e.g., Graziani et al., 2023). Finally, exploring
whether this concept of interpretability quantification can
be expanded to LLMs is an exciting direction.
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Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning, specifically the field of Interpretable
Machine Learning. The main contribution of our work is
the presentation of a more time- and cost-efficient approach
for quantifying how well humans can understand neural
activations. A potential risk in automating interpretability
research is that we will start optimizing for metrics that are
never fully aligned with human judgments. It is conceiv-
able that this will encourage the design of models that ace
our metric but whose inner workings and decision making
processes are still obscure to human observers. This would
set false goal posts and potentially come with safety risks if
a high score in MIS were mistaken for a white box model
that comes with higher trustworthiness. Beyond that, we
see many potential use cases for this result (see Sec. 5), that
can all advance the state of machine learning. There are
potential societal consequences of our work, however, none
of which we feel must be specifically highlighted here.
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A. Description of the 2-AFC Task
A.1. Task Design

Our proposed MIS builds on the 2-AFC task designed by Borowski et al. (2021) to conduct human psychophysics
experiments. An example of such a task is given in Fig. 13.

This task aims to probe how well (human) participants can detect the sensitivity of a unit of a neural network based on
visual explanations of it. Understanding the unit’s sensitivity should allow participants to distinguish between a stimulus
eliciting highly activating from one yielding low activation. Therefore, the task shows the participants two such images,
called query images, and asks them to pick the image eliciting higher activation. To solve the task, participants also see
two sets of visual explanations: Positive explanations describe the patterns the unit activates strongly for, while negative
activations show patterns the unit weakly responds to. For solving this task, there are two potential strategies: Participants
can either recognize a common pattern of the positive explanations in one of the query images, making this the correct
choice. Or they detect a common pattern of the negative explanations in a query image, making the other one the right
choice. See Borowski et al. (2021); Zimmermann et al. (2021) or Zimmermann et al. (2023) for alternative descriptions and
visualizations of the task.

Negative Explanations

Positive Explanations

2D

Positive Explanations

3 Ea*‘

Negative Explanations

Queries

Fig. 13: Examples of the 2-AFC Task. For two different units of GoogLeNet one task each is shown. Every task contains
a set of negative (left) and positive (right) visual explanations describing which visual feature the unit is sensitive to. In
the center, two query images in the form of strongly and weakly activating dataset examples are shown, respectively. This
means that each one of the two query images corresponds to the positive and the other to the negative explanations. The task
is now to choose which query image corresponds to the positive ones.

A.2. Task Construction

For constructing tasks, we follow Zimmermann et al. (2023). Specifically, this means that we use K = 9 (positive and
negative) explanations in each task. We restrict explanations to natural dataset examples to reduce complexity but note that
the same setup can also be applied to other visual explanations, such as feature visualizations. To choose query images
and explanations, we proceed as follows: For each unit, we determine the N - (K + 1) most and least activating images,
respectively. Out of these, the IV - K most extreme images are used as explanations, the others as query images. The N - K
potential explanation images are uniformly distributed across tasks according to their elicited activation level (see (Borowski
et al., 2021; Zimmermann et al., 2023) for more details).
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B. Influence of the Underlying Perceptual Similarity on the Machine Interpretability Score

As stated in Sec. 3, we used DreamSim (Fu et al., 2023) as the underlying perceptual similarity f for all experiments
shown so far. We now repeat the experiments on IMI in Sec. 4.1.1 with two alternative similarity measures: LPIPS (Zhang
et al., 2018) and DISTS (Ding et al., 2022). While all three measures are based on learned image features, DreamSim
leverages an ensemble of modern vision models trained on larger datasets compared to LPIPS and DISTS, which use
AlexNet (Krizhevsky et al., 2012) and VGG16 (Simonyan & Zisserman, 2015) trained on ImageNet, respectively. According
to Fu et al. (2023), DreamSim clearly outperforms LPIPS and DISTS on image similarity benchmarks.

When comparing MIS based on DreamSim with one based on LPIPS and DISTS on a per-model level (see Fig. 14) one sees
very similar results and strong correlations between each MIS and HIS. This might suggest that the choice of the similarity
function to use has little influence on the quality of MIS. The picture, however, changes when zooming in and looking at
per-unit interpretability (see Fig. 16). Now, it becomes evident that the MIS based on DreamSim outperforms that based on
LPIPS and DISTS, indicated by the higher correlation and smaller spread of the point cloud. We, therefore, conclude that
DreamSim is the best perceptual similarity available for computing machine interpretability scores.

To put the difference in performance between the perceptual similarities on a per-unit level into context, we estimate the
noise ceiling of the data: As the HIS for a single unit is a (potentially) noisy estimate over (up to 30) human decisions,
it has some uncertainty. To take this into account, we run a statistical simulation, in which we model individual human
responses as binary decisions from a Bernoulli distribution whose mean equals the unit’s HIS. We can now simulate human
decisions by sampling from the distribution. Then, we compute the correlation between MIS and simulated HIS and repeat
the process 1 000 times. The resulting noise ceiling is compared to the correlations obtained when using LPIPS, DISTS, and
DreamSim in Fig. 15. We see that DreamSim’s performance is very close to the noise ceiling for estimating the per-unit
human interpretability.
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Fig. 14: LPIPS and DISTS Perform Similarly as DreamSim when Comparing Models. We compare DreamSim with
two earlier perceptual similarity metrics, LPIPS and DISTS. All three lead to similar results on IMI (cf. Fig. 2). See Fig. 16
for comparing these similarity functions on a per-unit level. standard deviation.

C. Sensitivity of the MIS on the Number of Tasks

As described in Sec. 3, we compute the MIS by averaging over N = 20 tasks. This choice was initially motivated by
previous work by Borowski et al. (2021). We investigate now how this choice influences the MIS. For this, we perform two
experiments for GoogLeNet (see Fig. 17). First, we use the method for constructing tasks described before in Appx. A.2 to
create 20 tasks per unit and then compute how the MIS changes when only using the first ¢ = 1, ..., 19 tasks compared
to all 20. While this setting is straightforward to analyze, it does not reflect how the number of tasks influences the MIS
computation in practice: Using the task creation above, the chosen number of tasks influences the creation of all tasks, e.g.,
adding one more task changes which images are used for previous tasks. Therefore, in the second experiment, we again
measure how the MIS changes when using 7 = 1, ..., 19 tasks compared to 20, but recreate all tasks when increasing their
number. For both settings, we see that the residual converges to zero, with a slower convergence in the more realistic setting.
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Fig. 15: Best Perceptual Similarity Approaches Noise Ceiling. Considering the noise ceiling, caused by the inherent
uncertainty of the HIS, the best perceptual similarity (DreamSim) shows an almost perfect performance. The black bar and
shaded area show the mean correlation and standard deviation over 1 000 simulations, respectively.
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Fig. 16: LPIPS and DISTS Perform Worse than DreamSim when Comparing Individual Units. We compare DreamSim
with two earlier perceptual similarity metrics, LPIPS and DISTS. While LPIPS and DISTS perform similarly to DreamSim
on a per-model level of IMI (cf. Fig. 16), they lead to worse performance on a per-unit level.
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Fig. 17: Convergence of MIS. We investigate how MIS changes depending on the number of tasks [V that it is computed
over. Here, we distinguish between two settings. In (a), we simulate that adding another task does not change the selection
of query images and explanations in earlier tasks; in (b), this is not the case. While the former is easier to analyze due to a
reduced level of randomness, note that the latter is the more relevant setting in practice. For both cases, we visualize the
average absolute difference in MIS estimated for < 20 and N = 20 tasks.
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D. Applying MIS for Different Explanation Methods

The experiments in Sec. 4 compute the MIS for one type of explanation, namely strongly activating dataset examples. We
now demonstrate that the same approach easily generalizes to other visual explanations: feature visualizations. We do not
tune any hyperparameters but re-use the same as presented in Sec. 3 for dataset examples as explanations. In Fig. 18 we
repeat the experiment from Fig. 2 and again see a strong correlation between MIS and HIS.

0.75
4] Models
S @ Ps=0.88 ®
‘20.70- Pp=0.95
= [
3
% 0.65 A
é [ )
i)
£ 0.60 A e °
C
©
S
=}
T 055- o

0.55 0.60 0.65 0.70
Machine Interpretability Score

Fig. 18: MIS Generalizes Well to Other Explanation Types. We find a high correlation between MIS and HIS for other
explanation types (feature visualizations). See Fig. 2 for the corresponding results for using natural dataset examples as
explanations.

E. Analysis of Constant Units

After training a network, it might happen that some of its units effectively become non-active/constant for any relevant
image. We here call a unit constant if the difference between maximally and minimally elicited activation by the entire
ImageNet-2012 training set is less than 1078, As mentioned at the beginning of Sec. 4, we excluded those units in our
analysis, as they do not present any interesting behavior that is worth understanding. Note that this does not mean that it will
not be interesting to understand why such units exist. In Fig. 19, we display the ratio of constant units for each model. For
most models, we see a low number of constant units: Specifically, we see that out of the 835 models investigated, 256 do not
contain any constant units, 89 contain more than 1 % and 22 more than 5 %. Note that we here used the same notion of
units as in the rest of the paper, meaning that we take the spatial mean of feature maps with spatial dimensions (e.g., for
convolutional layers).
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Fig. 19: Ratio of Constant Units. We compute the ratio of units constant with respect to the input (over the training set of
ImageNet-2012) for all models considered. While the ratio is low for most models, it becomes large for a few models.
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F. Details on Models

In addition to the 9 models investigated by Zimmermann et al. (2023) (GoogLeNet, ResNet-50, Clip ResNet-50, Robust (L2) ResNet-50,
DenseNet-101, WideResNet-50, Clip ViT-B32. ViT-B32), we include one more model suggested by them (Robust (L2) ResNet-50) and 825 models from timm (Wightman,
2019):

xcit_tiny_12_p16.224.fb_inlk, vit_tiny_patch16_384.augreg-in21k_ft_inlk, pit_xs_-224.inlk, repghostnet_111.inlk, regnetz_cl6_evos.ch_inlk, poolformer.m48.sail-inlk,
repghostnet_080.in1k, volo_d3_448.sail_inlk, vit_base_patch16.224.augreg_in21k_ft-inlk, regnety_320.tv2_inlk, densenetl2l.ra.inlk, mobilenetv3_large_100.ra-inlk,
repghostnet_150.in1k, seresnext26ts.ch_inlk, regnety_160.swag_ft_inlk, hrnet_-w40.ms_inlk, convnext_small.in12k _ft_inlk, vit_base_patchl16_.224.sam_inlk, seresnex-
taal01d_32x8d.sw_in12k ft_in1k_288, vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k, regnety_320.pycls_inlk, cs3darknet_m.c2ns_in1k, vit_tiny_patch16.224.augreg_in2 1k ft_in1k,
resnet101c.gluon_inlk, convnextv2_atto.fcmae_ft_inlk, flexivit_base.600ep-inlk, xcit_small_12_p16_384.fb_dist_in1k, mobilenetv2_050.lamb_in1k, flexivit_base.300ep-inlk,
resnext50-32x4d.tv_inlk, resnetl152.tv_inlk, seresnext26d_32x4d.bt_inlk, fbnetv3_g.ra2_inlk, poolformer_s36.sail_in1k, resnext101_32x8d.tv_in1k, rexnet-130.nav_inlk,
efficientvit_b2.r224 _in1k, convnext_small.fb_in22k _ft_in1k_384, resnet50_gn.alh_inlk, eva02_small_patch14_336.mim_in22k_ft_inlk, regnety_032.ra_inlk, res2net50d.in1k,
convit_small.fb_inlk, regnetx_160.pycls_inlk, convnextv2_large.fcmae_ft_.in22k_in1k_384, tf_efficientnet_bO.ns_jft_inlk, pit_ti_224.inlk, volo.d1_384.sail_in1k,
xcit_small_12_p8_384.fb_dist_in1k, dpnl31.mx_inlk, resnextl01_64x4d.gluon_inlk, densenetl69.tv_inlk, resnetlOld.ra2_inlk, repghostnet_200.in1k, resnet18.a2_inlk,
xcit_small_12_p16.224.fb_inlk, pvt_v2_b3.inlk, dm.nfnet_fl.dm.inlk, vit_large_patch32_384.orig-in21k_ft.inlk, convnextv2_tiny.fcmae_ft.in22k_inlk_384, gcres-
net50t.ra2_inlk, nf_regnet-bl.ra2_inlk, volo.dl1_224.sail_.inlk, resnet50.ram-inlk, hrnet-w18_small_v2.ms_inlk, convnext_base.clip-laion2b_augreg_ft_inlk, reg-
netx_160.tv2_inlk, sequencer2d_linlk, convnext_large.fb_in22k ft_inlk, botnet26t.256.c1_inlk, gc_efficientnetv2_rw_t.agc_inlk, wide_resnet50_2.racm_inlk,
halonet50ts.alh_inlk, cspresnext50.ra_inlk, resnetv2_50d_evos.ah_inlk, tf_efficientnetv2_b3.in21k_ft_inlk, resnetl52.gluon_inlk, lambda_resnet26rpt_256.cl_inlk,
fastvit_sa24.apple_dist-inlk, xcit-medium_24_p8_384.fb_dist_inlk, repvit-m0.9.dist-450e_inlk, regnetx_320.pycls_inlk, seresnextaal01d_32x8d.sw_in12k_ft_inlk,
efficientvit_b2.r288_in1k, convnext_tiny.in12k_ft_inlk, xcit-large_24_p16.384.fb_dist_inlk, resnetv2_50.alh_inlk, coatnet_-O_rw_224.sw_inlk, efficientnet_es_pruned.inlk,
dla60_res2net.inlk, efficientformer_17.snap_dist-inlk, cait-xxs24.224.fb_dist_inlk, vit_small_patch16.224.augreg_in21k_ft-inlk, tf_efficientnet_.cc_.bl_8e.inlk, effi-
cientvit_b1.r288_in1k, halonet26t.alh_inlk, mixnet_m.ft_inlk, hrnet_.w44.ms_inlk, regnety_160.tv2_inlk, xcit_nano_12_p8_384.fb_dist_in1k, seresnext101_32x8d.ah_inl1k,
efficientvit_b2.r256.inlk, vit_base_patch16_clip_224.1aion2b_ft_in12k_inlk, tf_efficientnet_lite2.inlk, deit3_small_patch16.224.fb_inlk, hrnet_-w18_ssld.paddle_inlk,
tf_efficientnet_b2.aa_in1k, crossvit_15_dagger_240.in1k, deit3_small_patch16_224.fb_in22k_ft_in1k, haloregnetz_b.ra3_in1k, tf_efficientnetv2_b0.in1k, eca_nfnet_10.ra2_in1k,
twins_pcpvt_small.inlk, ecaresnet50t.ra2_inlk, fastvit_sal2.apple_dist_inlk, skresnext50.32x4d.ra_inlk, resnet50d.a2_inlk, vit_base_patch32_clip-224.laion2b_ft_in1k,
resnetblur50.bt_inlk, vit_base_patch16_224.orig-in21k_ft_in1k, resnet50.alh_inlk, hardcorenas_e.miil_green_inlk, coatnext_nano.rw_224.sw_inlk, con-
vnext_base.clip_laiona_augreg_ft_in1k_384, tresnet_m.miil_in1k_448, resnet10t.c3_inlk, poolformerv2_m48.sail_inlk, tf efficientnet_bl.aa_inlk, edgenext_base.usi-inlk,
tf_efficientnet_es.inlk, tresnet_l.miil_inlk 448, resnetl52.alh_inlk, mixnet.s.ft.inlk, resnet50.am_inlk, rexnet-100.nav_inlk, xcit_large_24_p8_224.fb_dist_inlk,
deit3_base_patch16.224.fb_in22k_ft_in1k, xcit_tiny_-24_p8_384.fb_dist_in1k, coat_lite_medium_384.in1k, focalnet_small_srf.ms_in1k, vit_base_patch8_224.augreg_in21k_ft_in1k,
convnext_tiny_hnf.a2h_inlk, visformer_small.inlk, vit_small.r26_s32_384.augreg_in21k_ft_inlk, vggl6_bn.tv_inlk, eca_nfnet_ll.ra2_inlk, xcit_small-12_p8_224.fb_inl1k,
beitv2_base_patch16.224.in1k_ft-in22k_inlk,  cs3edgenet_x.c2.inlk, vit-base_patchl6_clip-384.laion2b_ft_.in12k_inlk,  xcit-small_12_p16.224.fb_dist_inlk,  con-
vformer_b36.sail_in1k_384, bat_resnext26ts.ch_inlk, caformer_b36.sail_.inlk, dla34.inlk, crossvit_18_dagger 240.inlk, tf_efficientnetv2_s.in21k_ft.inlk, focal-
net_base_srf.ms_inlk, convformer_b36.sail-in22k_ft_in1k_384, resnet34.tv_inlk, resmlp_-24_224.fb_distilled_inlk, convnext_base.clip_laion2b_augreg_ft_in12k_inlk,
caformer_s18.sail.in1k_384, resnetaa50.alh_inlk, beitv2_base_patch16_224.in1k_ft_inlk, convformer-m36.sail_in22k_ft_inlk, inception_resnet_v2.tf_ens_adv_inlk,
mobilenetv2_110d.ra_inlk, resnext101_32x4d.fb_swsl_iglb_ft_inlk, regnetx_008.tv2_inlk, convnext_small.in12k_ft_in1k_384, levit_conv_128.fb_dist_in1k,
volo_d3.224.sail_inlk, nest_tiny_jx.goog_inlk, mobileone_s2.apple_inlk, fastvit_t8.apple_dist.inlk, halo2botnet50ts_256.alh_inlk, mobilenetv2_140.ra_in1k,
caformer_m36.sail_inlk, seresnet50.ra2_inlk, hardcorenas_d.miil_green_inlk, convformer_b36.sail_inlk, regnety_320.swag_ft_inlk, volo_d4_448.sail_inlk,
tf_efficientnet_b2.ns_jft_inlk, sebotnet33ts_256.alh_inlk, vit_small_patch32_224.augreg_in21k ft_inlk, vit_base_patch32_224.sam_inlk, resnetv2_50d_gn.ah_inlk,
mobileone_s4.apple_inlk, coat_small.in1k, tf_mixnet_Linlk, resnet34.a2_inlk, regnetx-032.pycls_in1k, resnetaal 01d.sw_in12k_ft_in1k, Icnet_100.ra2_in1k, repvgg-bl.rvgg_inlk,
crossvit-15_240.in1k, edgenext_x_small.in1k, repvit-m1_.5.dist_300e_in1k, hardcorenas_a.miil_green_in1k, efficientformer._11.snap_dist_in1k, tf_mobilenetv3_large_075.in1k,
hrnet_w18_small.ms_inlk, tf efficientnet_b2.inlk, ghostnetv2_130.inlk, ecaresnet26t.ra2_inlk, fastvit_sl12.apple_inlk, xcit_tiny_12_p8_224.fb_dist_inlk, tres-
net_m.miil_in21k_ft_inlk, fastvit_sa24.apple_inlk, resnetrs200.tf_inlk, convnextv2_nano.fcmae_ft_inlk, resnet50.ra_inlk, resnet34.bt_inlk, regnety_002.pycls_inlk,
focalnet_base_Irf.ms_inlk, dlal02.in1k, regnetz_e8.ra3_.inlk, pvt_v2_bO.inlk, xcit-medium_24_p8.224.fb_inlk, regnety-640.seer_ft_inlk, resnet200d.ra2_inlk,
caformer_s36.sail_in1k_384, deit3_small_patch16_384.fb_in22k_ft_in1k, eca_resnext26ts.ch_inlk, vgg13.tv_inlk, tf_efficientnet_lite0.in1k, resnet50.blk_in1k, dla60_res2next.inlk,
repvit-m1_1.dist-300e-in1k, convnext_base.fb_in22k_ft_inlk, tf_efficientnet_cc_b0_4e.inlk, ese_vovnetl9b_dw.ra_inlk, resnetv2_152x2_bit.goog-teacher_in21k_ft-inlk,
deit_base_distilled_patch16_384.fb_inlk, resnetlOld.gluon_inlk, convnext_large.fb_in22k_ft_inlk 384, darknet53.c2ns_inlk, poolformerv2_s36.sail_inlk, con-
vformer_-m36.sail_in22k _ft_in1k_384, gmlp_s16_.224.ra3_inlk, convformer_s18.sail_inlk, efficientnet_em.ra2_inlk, inception_v3.gluon_inlk, resmlp_12_224.fb_inlk,
tresnet_l.miil-in1k, ecaresnet101d_pruned.miil-in1k, resnet152.a2_inlk, vit_small_patch32_384.augreg_in2 1k_ft_in1k, inception_v3.tf_adv_in1k, repghost-
net_130.in1k, levit_.conv_384.fb_dist_inlk, repvit-ml1_5.dist-450e_inlk, efficientnet_el.ra_inlk, seresnet50.a2_inlk, pit_s_distilled_224.inlk, cspdarknet53.ra_inlk,
tf_efficientnet_cc_b0_8e.inlk,  densenet201.tv_inlk, resnext50_32x4d.al_.inlk, cs3sedarknet_l.c2ns_inlk, cait_s24_384.fb_dist_inlk, spnasnet-100.rmsp-inlk,
res2net50_14w_8s.inlk,  repvgg.-d2se.rvgg_inlk, regnetx_032.tv2_inlk,  crossvit_18_dagger 408.inlk,  pit_b_distilled_224.inlk,  cs3darknet_focus_l.c2ns_inlk,
resnet50.bt_inlk, vggll.tv_inlk, convnextv2_femto.fcmae_ft_inlk, convnext_nano.in12k ft.inlk, resnextl01_64x4d.tv_inlk, convnext.nano.dlh_inlk, cspres-
net50.ra-inlk, tf_mixnet-m.inlk, xcit_tiny_12_p16_384.fb_dist_inlk, seresnet50.al_inlk, efficientnetv2_rw_t.ra2_inlk, resnetl52d.gluon_inlk, regnety_032.tv2_inlk,
inception_resnet_v2.tf_inlk, eva_large_patch14_196.in22k_ft_inlk, pvt.v2_bl.inlk, convformer.m36.sail.in1k-384, densenetl6l.tv_inlk, dlal02x.inlk, ed-
genext_small_rw.sw_inlk, regnety_016.tv2_inlk, convnextv2_base.fcmae_ft-inlk, vit-large_patchl4_clip-336.laion2b_ft-in12k_inlk, levit_conv_128s.fb_dist-in1k,
hrnet_w48.ms_inlk, resnet101.alh_inlk, xcit_-medium_24_p8_224.fb_dist_in1k, resnetrs152.tf_in1k, convnextv2_nano.fcmae_ft_in22k_in1k, convnextv2_tiny.fcmae_ft_in22k_in1k,
resnext50d_32x4d.bt_inlk, gernet_s.idstcv_inlk, selecsls42b.inlk, repvit-m3.dist.inlk, resnest50d_1s4x24d.inlk, dpn98.mx_inlk, xcit-nano_12_p16_224.fb_inlk,
regnetx-016.pycls_inlk, xcit-medium_24_p16.224.fb_inlk, caformer_sl18.sail_.inlk, sehalonet33ts.ra2_inlk, tinynet_c.inlk, xcit_tiny-24_p16.224.fb_dist_inlk, flex-
ivit_small.300ep-in1k, resnext101_32x8d.tv2_in1k, convnextv2_base.fcmae_ft-in22k_in1k_384, semnasnet_075.rmsp-inlk, res2net50-26w_4s.inlk, cait_xxs24_384.fb_dist-in1k,
mobilenetv2_120d.ra_inlk, seresnext26t_32x4d.bt_inlk, flexivit_base.1200ep_in1k, res2net50_26w_6s.inlk, vit_base_patch16_clip_384.openai_ft_in12k_in1k,
nest_base_jx.goog-inlk, ecaresnetlight.miil_inlk, repvgg_b0.rvgg_inlk, ecaresnet50t.al_inlk, inception_next_tiny.sail_inlk, regnety_032.pycls_inlk,
mixer_b16_224.miil_in21k ft_inlk,  poolformer_s12.sail_inlk,  vit_base_patch32_clip_384.openai_ft_in12k_inlk,  vit_base_patch32_384.augreg_in21k_ft_inlk, effi-
cientvit_bl.r224_inlk, vit_base_patch16_clip_384.laion2b_ft_in1k, deit_small_distilled_patch16_224.fb_in1k, efficientvit_b0.r224_in1k, resnest50d.in1k, regnety_-120.pycls_in1k,
semnasnet-100.rmsp-inlk, wide_resnet50-2.tv_inlk, xcit-small 24_p16.224.fb_inlk, resnetl0l.a3_inlk, fastvit_t12.apple_inlk, tf_efficientnetlitel.inlk, tinynet.a.inlk,
resmlp_big_24_224 fb_distilled_in1k, cs3se_edgenet_x.c2ns_inlk, resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384, resnext50_32x4d.tv2_inlk, efficientnet_.b2.ra_inlk,
convformer_s18.sail_in22k _ft_in1k_384, caformer_s18.sail_in22k_ft_in1k_384, deit3_base_patch16_224.fb_inlk, vit_base_patch32_clip_384.laion2b_ft_in12k_in1k,
vit_medium_patch16_gap_384.sw_in12k_ft_inlk, sequencer2d_s.inlk, mobileone_sO.apple_inlk, edgenext_base.in21k_ft.inlk, deit3_medium_patch16_224.fb_inlk,
efficientformerv2_l.snap_dist-inlk, lambda_resnet50ts.alh_inlk, xception4lp.ra3_inlk, resnext50-32x4d.a3_inlk, crossvit-small.240.inlk, repvgg-al.rvgg_inlk,
resnet51q.ra2_inlk, xcit_small_24_p16_384.fb_dist-in1k, vit_base_patch32_clip_224.openai_ft_in1k, flexivit_large.300ep-in1k, repvgg_b3g4.rvgg_inlk, resnext50-32x4d.alh-inlk,
coat_lite_medium.inlk, vit_base_patch32_clip_448.laion2b_ft_in12k_inlk, resnext50_32x4d.gluon_inlk, repvgg b2.rvgg_inlk, vit_base_patchl6_rpn_224.sw_inlk,
mixer_-b16.224.goog_in21k_ft_inlk, resnet50.c2_inlk, lamhalobotnet50ts_256.alh_inlk, tiny_vit-2Im_512.dist_in22k_ft_.inlk, xcit_large_24_p16_224.tb_dist_inlk,
repvgg-a2.rvgg_inlk, gernet_l.idstcv_in1k, mobilevitv2_050.cvnets_in1k, convnextv2_base.fcmae_ft_in22k_in1k, resnet18.a3_inlk, ecaresnet50d.miil-in1k, coat_lite_small.in1k,
convnext_xlarge.fb_in22k_ft_inlk, mobilevitv2_075.cvnets_inlk, cait_s36_384.fb_dist-inlk, efficientformerv2_sl.snap_dist_inlk, resnetl8.fb_swsl.iglb_ft_.inlk, mo-
bileone_sl.apple_inlk, resnet6lq.ra2_inlk, tf_efficientnetv2_b3.inlk, mobilevitv2_175.cvnets_inlk, convnext_tiny.fb_in22k_ft_in1k_384, crossvit-tiny-240.in1k,
caformer_b36.sail_in22k _ft_in1k_384, resnetl52d.ra2_inlk, convit_base.fb_inlk, tinynet_b.inlk, deit3_large_patchl16.384.fb_in22k ft.inlk, regnetx_004_tv.tv2_inlk,
cait_xxs36-384.fb_dist_in1k,  convnext_nano_ols.dlh_inlk, efficientnet_liteO.ra_inlk, inception_v4.tf_inlk, hrnet-wl8.ms_inlk,  gernet-m.idstcv_inlk, con-
vformer_s36.sail_in22k _ft_in1k_384, deit_tiny_distilled_patch16.224.fb_in1k, deit_small_patch16_224.fb_in1k, vit_large_patch14 _clip_336.laion2b_ft_in1k, crossvit_18_240.in1k,
resnet26.bt_inlk, resnetl8.al.inlk, deit3_base_patch16_384.fb_in22k ft_inlk, convformer_s36.sail-inlk, convnext_small.fb_.in22k_ft_inlk, selecsls60b.inlk, ef-
ficientnet_bO.ra_inlk, focalnet_tiny_srf.ms_inlk, ecaresnetlOld.miil-inlk, regnetx_-080.tv2_inlk, mobileone_s3.apple_inlk, mobilenetv3_rw.rmsp-inlk, pool-
formerv2_m36.sail_in1k, seresnextaal 01d_32x8d.ah_in1k, levit_conv_192.fb_dist_in1k, focalnet_tiny_Irf.ms_in1k, regnety_320.swag_lc_in1k, tresnet_v2_l.miil_in2 1k _ft_in1k,

16



Measuring Mechanistic Interpretability at Scale Without Humans

seresnet50.a3_inlk, dla46x_c.inlk, cs3darknet_x.c2ns_inl1k, tf_efficientnet_b0.ap_in1k, vit_base_patch16_224.augreg2_in2 1k_ft_in1k, resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k,
xcit_large_24_p8_384.fb_dist_in1k, tinynet_e.inlk, cait_xs24_384.fb_dist_in1k, fastvit_sal2.apple_inlk, hrnet_-w64.ms_in1k, regnety_016.pycls_inlk, wide_resnet101_2.tv2_in1k,
beitv2_large_patch16_224.in1k_ft_in22k_in1k, hrnet-w30.ms_inlk, resnetlOl.tv_inlk, repvit-m2.dist_inlk, coatnet_-nano_rw_224.sw_inlk, flexivit_small.1200ep-inlk,
tf_efficientnet_b0.in1k, tf_efficientnet_bl.in1k, efficientformer_13.snap_dist-in1k, vit_base_patch16_384.augreg_in21k_ft_in1k, xcit_tiny_24_p8.224.fb_dist-in1k, dlal02x2.in1k,
hardcorenas_f.miil_green-inlk, regnety_064.ra3_inlk, resnextl01_32x4d.gluon-inlk, tf_efficientnetv2_b2.inlk, resnet32ts.ra2_inlk, xcit-tiny-12_p8_384.fb_dist-inlk,
inception_v3.tv_inlk, xcit_large 24 _p16_224.fb_inlk, ecaresnet50t.a3_inlk, repvit-m2_3.dist.450e_inlk, fbnetv3_b.ra2_inlk, vit_base_patch8_224.augreg2_in21k_ft_inlk,
cs3darknet_l.c2ns_inlk, convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384, regnety_160.deit_in1k, regnety_160.pycls_inlk, dla60x.in1k, xcit_tiny_24_p16_384.fb_dist_in1k,
eva02_tiny_patch14_336.mim_in22k ft_inlk, volo.d2_.224.sail_inlk, regnety_160.swag_lc_inlk, vit_base_patch32_clip_-224.laion2b_ft_in12k_inlk, tf_mixnet_s.inlk,
repvit-m1.0.dist-300e_in1k, convnextv2_large.fcmae_ft_inlk, resmlp-12_224.fb_distilled-in1k, xcit-medium_24_p16_-384.fb_dist_in1k, regnety _080_tv.tv2_in1k, dpn107.mx_in1k,
inception_v3.tf_inlk, dpn68.mx.inlk, efficientnet_es.ra_inlk, mnasnet-100.rmsp-inlk, resnetl01.tv2_inlk, res2next50.inlk, vit_-base_patchl16_clip-384.openai_ft-inlk,
tf_efficientnet_bl.ns_jft_inlk, flexivit_small.600ep-inlk, visformer_tiny.inlk, resnet50.al_inlk, dla60.inlk, regnetz_d32.ra3_inlk, senetl54.gluon_inlk, efficient-
netv2_rw_s.ra2_inlk, focalnet_small_Irf.ms_inlk, seresnet33ts.ra2_inlk, fbnetc_100.rmsp-inlk, resnetl8d.ra2_inlk, resnet34.a3_inlk, dla60x_c.inlk, efficient-
net_bl_pruned.inlk, efficientformerv2_s2.snap_dist_in1k, resnet50s.gluon_in1k, resnet101.a2_in1k, regnety_040.ra3_in1k, convmixer-1536_20.in1k, regnety_008_tv.tv2_inl1k,
resnet152.al_inlk, mixnet_l.ft.inlk, gcresnext26ts.ch_inlk, vit_base_patchl6_clip-224.openai_ft_inlk, fastvit-ma36.apple_inlk, vggl6.tv_inlk, gcresnext50ts.ch-inlk,
xcit_tiny_12_p16_224.fb_dist_in1k, regnety_008.pycls_inlk, resmlp_36_224.fb_distilled_in1k, regnetz_040_h.ra3_inlk, inception_next_base.sail_inlk, dm_nfnet_f0.dm_inlk,
resnet50.d_inlk, efficientnet_b2_pruned.inlk, resnetl8.tv_inlk, rexnet_150.nav_inlk, convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320, ghostnetv2_160.inlk,
vit_small_patch16_384.augreg_in21k_ft_in1k, convnext_xlarge.fb_in22k_ft_in1k_384, mobilenetv3_small_075.lamb_inlk, regnetz_d8_evos.ch_inlk, dm_nfnet_f3.dm_inlk,
repvgg_b3.rvgg_inlk, convnext_large_mlp.clip_laion2b_augreg_ft_inlk_384, dpn68b.mx_inlk, resnext101-32x8d.fb_wsl_iglb_ft.inlk, deit3_large_patch16-384.fb_inlk,
convformer_s18.sail_in1k_384, repghostnet_058.in1k, fastvit_sa36.apple_dist-in1k, resnext50_32x4d.a2_in1k, regnetx-040.pycls-inlk, vit_base_r50_s16_384.orig-in2 1k_ft_in1k,
vit_base_patch16_clip_224.laion2b_ft_in1k, deit3_base_patch16_384.fb_in1k, tf_efficientnetv2_s.inlk, ecaresnet50t.a2_in1k, resnetrs50.tf_in1k, gmixer_24_224.ra3_in1k, resne-
taa50d.sw_in12k_ft_in1k, tresnet_xl.miil_in1k, resnest101e.in1k, regnetx_004.pycls_in1k, mnasnet_small.lamb_in1k, repvgg_a0.rvgg_inlk, resnetv2_50x1_bit.goog_in21k_ft_in1k,
cait_s24_224.fb_dist_in1k, regnety_004.tv2_in1k, convnext_base.fb_in22k_ft_in1k_384, convnext_tiny.fb_in22k_ft_in1k, convnext_tiny.in12k_ft_in1k_384, eca_halonext26ts.c1_in1k,
resnet]18.gluon-inlk, fastvit_s12.apple_dist.inlk, deit_base_patch16.224.fb_inlk, hrnet-w18.ms_aug_inlk, resnet33ts.ra2_inlk, seresnextl01_64x4d.gluon_inlk, con-
vnext-small.fb_in1k, convformer_s36.sail_in1k_384, pit_ti_distilled_224.in1k, resnet50.tv2_in1k, nest_small_jx.goog-inlk, resmlp_36_224.fb_in1k, hrnet-w18_small.gluon_in1k,
vit_base_patch16_384.augreg_inlk, resnet50.fb_swsl_iglb_ft_inlk, poolformer_m36.sail_in1k, tf_mobilenetv3_small_100.in1k, regnety_040.pycls_in1k, gcresnet33ts.ra2_inlk,
resnet101s.gluon_inlk, darknetaa53.c2ns_in1k, poolformerv2_s12.sail_in1k, resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k, poolformerv2_s24.sail_in1k, eca_resnet33ts.ra2_inlk,
repvit-m2_3.dist-300e_in1k, nf_resnet50.ra2_inlk, convnext_pico-ols.d1-inlk, caformer_s36.sail_inlk, regnetz_040.ra3_inlk, vit_small_r26_s32_224.augreg_in21k_ft_in1k,
resnext26ts.ra2_inlk, mixnetxl.ra-inlk, deit_base_patch16_384.fb_inlk, repvit-m1_0.dist-450e_inlk, convmixer-1024_20_ks9_pl4.inlk, regnety_064.pycls_inlk,
resnet34.gluon.inlk, res2net101_26w_4s.inlk, nfnet_10.ra2_inlk, resnet34d.ra2_inlk, convnextv2_nano.fcmae_ft_in22k_in1k 384, twins_pcpvt_base.inlk,
resnetv2_101.alh_inlk, xcit_nano_12_p8_224.fb_dist_inlk, xcit_small 24_p8_224.fb_dist_inlk, resnet50.b2k_inlk, deit3_small_patch16_384.fb_inlk, hardcore-
nas_c.miil_green_inlk, coat_lite_mini.inlk, resnetl52.tv2_inlk, densenetblurl2ld.ra_inlk, hrnet_-w18_small_v2.gluon_inlk, vit_base_patchl16_384.orig-in21k_ft_inlk,
xcit_small_12_p8_224.fb_dist_inlk, convformer.-m36.sail_inlk, xcit-nano_12_p16.384.fb_dist_inlk, resnet34.al_inlk, convnext.atto_ols.a2_inlk, resnetl4t.c3_inlk,
twins_pcpvt_large.inlk, resnest26d.gluon-in1k, mobilenetv3_small_100.lamb_in1k, efficientnet_-b3_pruned.inlk, vit_small_patch16_224.augreg_inlk, convnext_tiny.fb_in1k,
resnet50d.a3_inlk, mobilevitv2_175.cvnets_in22k_ft_in1k_384, deit3_medium_patch16-224.fb_in22k_ft_in1k, seresnext101_32x4d.gluon-in1k, hardcorenas_b.miil_green_inlk,
caformer_m36.sail_in22k ft_in1k, ghostnetv2_100.in1k, ecaresnet50d_pruned.miil_inlk, caformer_s36.sail_in22k ft_in1k_384, deit_tiny_patch16.224.fb_in1k,
fastvit_sa36.apple_in1k, regnety_320.seer_ft_in1k, edgenext_small.usi-in1k, resmlp_big_24_224.fb_in22k _ft_in1k, regnety_160.lion_in12k_ft_in1k, regnety_-160.sw_in12k_ft_in1k,
tf_efficientnet_bl.ap_inlk, res2net50.48w_2s.inlk, eca_botnext26ts_256.cl_inlk, xcit-small 24_p8_224.fb_inlk, crossvit-9_dagger-240.inlk, coat_lite_tiny.in1k,
resnetv2_101x1_bit.goog-in21k_ft_in1k, convnext_large_mlp.clip_laion2b_augreg_ft_in1k, xcit-nano-12_p16.224.fb_dist_inlk, cs3darknet_focus_m.c2ns_inlk,
wide_resnet50_2.tv2_inlk, vit_base_patchl16_clip_224.openai_ft_in12k_inlk, skresnet34.ra_inlk, repvgg blgd.rvgg_ inlk, vggl9 bn.tv_inlk, repghostnet_100.inlk,
regnetv_064.ra3_inlk, mobilenetv2_100.ra_inlk, convnext_femto.d1_in1k, resnet26t.ra2_inlk, regnetv_040.ra3_in1k, skresnet18.ra_inlk, caformer_m36.sail_in22k _ft_in1k_384,
vit_base_patch32_384.augreg_inlk, regnetz_bl6.ra3_inlk, hrnet-w48_ssld.paddle_inlk, resnest50d_4s2x40d.inlk, cait-xxs36_224.fb_dist_inlk, regnetx_-016.tv2_inlk,
xcit_small_24_p8_384.fb_dist_inlk, vit_tiny_r_.s16_p8_224.augreg_in21k_ft_inlk, coat-mini.inlk, xcit_small-24_p16_224.fb_dist-inlk, caformer_s36.sail_in22k_ft_inlk,
poolformer_s24.sail_inlk, resmlp_big-24.224.fb_inlk, regnetx-120.pycls_inlk, regnetz_d8.ra3_inlk, resnet50d.ra2_inlk, repvit-ml.dist-inlk, eca_nfnet_12.ra3_inlk,
resnet50d.gluon_inlk, seresnext50_32x4d.racm.inlk, vit_small_patch16_384.augreg_inlk, coat_tiny.inlk, xcit_nano_12_p8.224.fb_inlk, crossvit_-base_240.inlk,
resnet50d.al_inlk, convformer_s36.sail_in22k_ft_inlk, convnextv2_large.fcmae_ft_.in22k_inlk, resnet50.tv_inlk, resnet50.cl.inlk, pit_xs_distilled_224.inlk, efficient-
net_bl.ft.inlk, tf_efficientnet_el.inlk, hrnet-w32.ms_inlk, vit_base_patch16.224_miil.in21k_ft_in1k, cs3sedarknet_x.c2ns_inlk, dpn68b.ra_inlk, tf_efficientnetv2_bl.inlk,
regnety -004.pycls_inlk, tf_mobilenetv3_large_minimal_100.inlk, resnetrs101.tf_inlk, ese_vovnet39b.ra_inlk, mixer_116.224.goog_in21k_ft_in1k, repghostnet_050.in1k,
repvgg-b2g4.rvgg_inlk, repvit-m1_1.dist_-450e_in1k, vit_base_patch32_224.augreg_in21k_ft_in1k, tf_mobilenetv3_large_100.in1k, pit_s_224.in1k, caformer_s18.sail_in22k_ft_in1k,
wide_resnet101_2.tv_inlk, fastvit_t12.apple_dist_inlk, convmixer_768_32.in1k, vit_base_patch32_224.augreg_inlk, efficientformerv2_s0.snap_dist_inlk, resnest200e.inlk,
levit_conv_256.fb_dist_in1k, resnet18.fb_ssl_yfcc100m_ft_inlk, vggl3_bn.tv_inlk, resnet152c.gluon_inlk, dlal169.inlk, pvt_v2_b4.inlk, crossvit_15_dagger_408.inlk, con-
vnext_femto_ols.d1_inlk, convnext_large.fb_in1k, regnetx_064.pycls_inlk, fastvit_t8.apple_in1k, seresnet]152d.ra2_inlk, vggl19.tv_inlk, vggl1_ bn.tv_inlk, dm_nfnet_f2.dm_in1k,
seresnext101d_32x8d.ah_inlk, inception_next_base.sail_inlk_-384, lambda_resnet26t.cl_inlk, resnetv2_152x2_bit.goog_in21k_ft.inlk, fastvit-ma36.apple_dist-inlk,
regnety-006.pycls_inlk, regnety_080.pycls_inlk, resnet50.fb_ssl_yfccl00m_ft-inlk, tf_mobilenetv3_small 075.inlk, regnetzcl6.ra3_inlk, edgenext-xx-small.inlk,
crossvit_9_240.in1k, xcit_tiny_24_p8_224.fb_in1k, regnety_080.ra3_inlk, efficientvit_b1.r256_in1k, tinynet_d.inlk, caformer_b36.sail_in1k_384, pvt_v2_b2.in1k, resnet26d.bt_in1k,
convnext_pico.d1_inlk, pit-b_224.inlk, convnextv2_pico.fcmae_ft_inlk, fbnetv3_d.ra2_inlk, flexivit_large.1200ep-inlk, resnet50c.gluon_inlk, regnetx_080.pycls_inlk,
convnext_base.fb_inlk, tf_efficientnet_em.inlk, vit_base_patch16_224.augreg_inlk, convit_tiny.fb_inlk, resnext50_32x4d.fb_swsl_iglb_ft_inlk, dm_nfnet_f4.dm_inlk,
resnet50.a3-inlk, convnext_atto.d2_inlk, efficientnet_el_pruned.inlk, volo_d2_384.sail_inlk, resnext101_32x4d.fb_ssl_yfcc100m_ft-inlk, repvit-m0-9.dist-300e_inlk,
regnety_120.sw_in12k_ft_in1k, beit_base_patch16_384.in22k_ft_in22k_in1k, mobilenetv3_large_100.miil_in2 1 k_ft_in1k, tf_efficientnet_b0.aa-in1k, inception_next_small.sail_in1k,
deit_base_distilled_patch16_224.fb_inlk, lcnet_075.ra2_inlk, xcit_tiny_12_p8_224.fb_inlk, resnetlOl.gluon_inlk, dpn92.mx_inlk, resnetlOl.al_inlk, selecsls60.inlk,
beit_base_patch16_224.in22k_ft_in22k_in1k, convnextv2_tiny.fcmae_ft_in1k, res2net50_26w_8s.in1k, sequencer2d_m.in1k, vit-medium_patch16_gap_256.sw_in12k_ft_in1k, reg-
netx-008.pycls_inlk, resnet50.a2_in1k, res2net101d.inlk, vit_large_patch16_384.augreg_in21k_ft_inlk, pvt_v2_b2_li.in1k, regnetx_006.pycls_in1k, xcit_tiny_24_p16_224.fb_in1k,
pvt-v2_bS.inlk, resnext50-32x4d.ra-inlk, resnestl4d.gluon_inlk, caformer-m36.sail_inlk_384, resnet50.gluon-inlk, resnetl52s.gluon-inlk, flexivit_large.600ep-inlk,
resnetv2_50x1_bit.goog_distilled_in1k, resmlp_24_224.fb_inlk, deit3_large_patch16.224.fb_inlk, seresnext50_32x4d.gluon_inlk, densenet121.tv_inlk, resnetl52.a3_inlk,
ghostnet_100.in1k, tf_efficientnet_b2.ap_in1k, regnetx_002.pycls_in1k.
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G. Additional Results
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Fig. 20: Differences Between Layer Types are Significant. We analyze and test for statistical significances in the
differences in MIS between different layer types (see Fig. 8. The reported significance levels were computed using Conover’s
test over the per-model and per-layer-type means with Holm’s correction for multiple comparisons.
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Fig. 21: Influence of Input Resolution of MIS. We show the average MIS per model as a function of the model’s input
resolution. No trend is apparent; models with the same resolution yield different interpretability levels.
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Fig. 22: Change of Interpretability per Layer During Training. Detailed version of Fig. 11.
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Fig. 23: Comparison of the Minimum of the Per-unit MIS for Models. While the mean of the per-unit interpretability
varies in a rather narrow value range (see Fig. 5), we investigate differences in the distribution of scores. Specifically, we are
interested in the effective width of the distribution, i.e., how low does the minimal MIS per model go? To make the analysis
robust against outliers, we do not use the minimum but instead the 5th percentile. Note that this corresponds to the lower
end of the shaded area in Fig. 5. Compared to the average MIS, we see higher variability across models.
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(c) DenseNet201, block3_layer29_convl, unit 39 (d) DenseNet201, block3_layer35_norm2, unit 123

Fig. 24: Visualization of Units for which MIS overestimates HIS. To showcase the shortcomings of the MIS, we visualize
four units for which the MIS predicts an interpretability that is higher than the measured HIS in Fig. 3. See Fig. 25 for the
opposite direction. For each unit, we show the 20 most (right) and 20 least (left) activating dataset exemplars.
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(c) DenseNet201, block3_layer48_norm1, unit 1369 (d) ViT-B32, blockO_norm?2, unit 358

Fig. 25: Visualization of Units for which MIS underestimates HIS. To showcase the shortcomings of the MIS, we
visualize four units for which the MIS predicts an interpretability that is lower than the measured HIS in Fig. 3. See Fig. 24
for the opposite direction. For each unit, we show the 20 most (right) and 20 least (left) activating dataset exemplars.
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(a) ResMLP-36, blocks_10_linear_tokens, unit 61
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(c) GMixer-24, blocks_5_mlp_tokens_fc1, unit 166 (d) ResMLP-12, blocks_7_linear_tokens, unit 127

Fig. 26: Visualization of Hard Units from Models with High Variability. For the four models with the highest variability
in MIS (see Fig. 6), we visualize one of the units with the lowest MIS each. For each unit, we show the 20 most (right) and
20 least (left) activating dataset exemplars.
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