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Measuring Mechanistic Interpretability at Scale Without Humans
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Abstract
In today’s era, whatever we can measure at scale,
we can optimize. So far, measuring the in-
terpretability of units in deep neural networks
(DNNs) for computer vision still requires direct
human evaluation and is not scalable. As a result,
the inner workings of DNNs remain a mystery
despite the remarkable progress we have seen in
their applications. In this work, we introduce the
first scalable method to measure the per-unit in-
terpretability in vision DNNs. This method does
not require any human evaluations, yet its pre-
diction correlates well with existing human in-
terpretability measurements. We validate its pre-
dictive power through an interventional human
psychophysics study. We demonstrate the use-
fulness of this measure by performing previously
infeasible experiments: (1) A large-scale inter-
pretability analysis across more than 70 million
units from 835 computer vision models, and (2)
an extensive analysis of how units transform dur-
ing training. We find an anticorrelation between a
model’s downstream classification performance
and per-unit interpretability, which is also observ-
able during model training. Furthermore, we see
that a layer’s location and width influence its in-
terpretability.

1. Introduction
With the arrival of the first non-trivial neural networks, re-
searchers got interested in understanding their inner work-
ings (Krizhevsky et al., 2012; Mahendran & Vedaldi, 2015).
For one, this can be motivated by scientific curiosity; for
another, a better understanding might lead to building more
reliable, efficient, or fairer models. While the performance
of machine learning models has seen a remarkable improve-
ment over the last few years, our understanding of informa-

1Max Planck Institute for Intelligent Systems, Tübingen
AI Center, Tübingen, Germany 2Stanford University, Stan-
ford, USA. Correspondence to: Roland S. Zimmermann <re-
search@rzimmermann.com>.

Online version, code and interactive visualizations available at:
brendel-group.github.io/mis

tion processing has progressed more slowly. Nevertheless,
understanding how complex models — e.g., language mod-
els (Bricken et al., 2023) or vision models (Olah et al., 2017;
Zimmermann et al., 2023) — work is still an active and
growing field of research, coined mechanistic interpretabil-
ity (Olah, 2022). A common approach in this field is to
divide a network into atomic units, hoping they are easier to
comprehend. Here, atomic units might refer to individual
neurons or channels of (convolutional) layers (Olah et al.,
2017), or general vectors in feature space (Elhage et al.,
2022; Klindt et al., 2023). Besides this approach, mecha-
nistic interpretability also includes the detection of neural
circuits (Cammarata et al., 2020; Elhage et al., 2022) or
analysis of global network properties (Nanda et al., 2023).

The goal of understanding the inner workings of a neural
network is inherently human-centric: Irrespective of what
tools have been used, in the end, humans should have a
better comprehension of the network. However, human eval-
uations are time-consuming and costly due to their reliance
on human labor (Zimmermann et al., 2023). This results
in slower research progress, as validating novel hypotheses
takes longer.

Removing the need for human labor by automating the
interpretability evaluation can open up multiple high-impact
research directions: One benefit is that it enables the creation
of more interpretable networks by explicitly optimizing for
interpretability — after all, what we can measure at scale, we
can optimize. Moreover, it allows more efficient research on
explanation methods and might lead to an increased overall
understanding of neural networks. While efforts to build
such measures for language models exist (Bills et al., 2023),
there is no common approach yet for vision models.

The present work is the first to introduce a fully automated
interpretability measure (see Fig. 1A & B): the Machine
Interpretability Score (MIS). By leveraging the latest ad-
vances in image similarity functions aligned with human
perception, we obtain a measure that is strongly predictive
of human-perceived interpretability (see Fig. 1C). We verify
our measure through both correlational and interventional
experiments. By removing the need for human labor, we
can scale existing evaluations up by multiple orders of mag-
nitude. Finally, this work demonstrates potential workflows
and use cases of our MIS.
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Fig. 1: Definition of the Machine Interpretability Score. A. We build on top of the established task definition proposed
by Borowski et al. (2021) to quantify the per-unit interpretability via human psychophysics experiments. The task quantifies
how well participants understand the sensitivity of a unit by asking them to match strongly activating query images to
strongly activating visual explanations of the unit. See Fig. 13 for examples. B. Crucially, we remove the need for humans
and fully automate the evaluation: We pass the explanations and query images through a feature encoder to compute
pair-wise image similarities (DreamSim) before using a (hard-coded) binary classifier to solve the underlying task. Finally,
the Machine Interpretability Score (MIS) is the average of the predicted probability of the correct choice over N tasks. C.
The MIS proves to be highly correlated with human interpretability ratings and allows fast evaluations of new hypotheses.

2. Related Work
Mechanistic Interpretability While the overall field of
explainable AI (XAI) tries to increase our understanding of
neural networks, multiple subbranches with different foci ex-
ist (Gilpin et al., 2018). One of these branches, mechanistic
interpretability, hopes to improve our understanding of neu-
ral networks by understanding their building blocks (Olah,
2022). An even more fine-grained branch aims to interpret
individual units of vision models (Bau et al., 2017; Zhou
et al., 2018; Bau et al., 2020; Morcos et al., 2018; Olah et al.,
2017). We focus exclusively on this branch of research in
the present work. This line of research for artificial neural
networks was, arguably, inspired by similar efforts in neu-
roscience for biological neural networks (Hubel & Wiesel,
1962; Barlow, 1972; Quiroga et al., 2005).

Different studies set out to understand the behavior and
sensitivity of individual units of vision networks – here, a
unit can, e.g., be a channel in a convolutional neural net-
work (CNN) or a neuron in a multilayer perceptron (MLP).
With the recent progress in vision-language modeling, a
few approaches started using textual descriptions of a unit’s
behavior (Hernandez et al., 2022; Kalibhat et al., 2023).
However, the majority still uses visual explanations which
are either synthesized by performing activation maximiza-
tion through, e.g., gradient ascent (Olah et al., 2017; Erhan
et al., 2009; Mahendran & Vedaldi, 2015; Nguyen et al.,
2014; Mordvintsev et al., 2015; Yosinski et al., 2015; Olah
et al., 2017; Nguyen et al., 2017), or strongly activating
dataset examples (Olah et al., 2017; Borowski et al., 2021).

With the onset of large language models (LLMs) and the
increasing interest in them, there is also now an increasing
interest in mechanistic interpretability of them (e.g., Elhage
et al., 2021; Olsson et al., 2022; Bricken et al., 2023).

Quantifying Interpretability Rigorous evaluations, in-
cluding falsifiable hypothesis testing, are critical for re-
search on interpretability methods (Leavitt & Morcos, 2020).
This also encompasses the need for human-centric evalua-
tions (Borowski et al., 2021; Kim et al., 2022).

Nevertheless, such human-centric evaluations of inter-
pretability methods are only available in some sub-fields.
Specifically for the type of interpretability we are concerned
about in this work, i.e., the per-unit interpretability of vi-
sion models, two methods for quantifying the helpfulness of
explanations to humans were introduced before: Borowski
et al. (2021) presented a two-alternative-forced-choice (2-
AFC) psychophysics task that requires participants to de-
termine which of two images elicits higher activation of
the unit in question, given visual explanations (i.e., images
that strongly activate or deactivate the unit, see Fig. 1A) of
the unit’s behavior. Zimmermann et al. (2021) extended
this paradigm to quantify how well participants can predict
the influence of interventions in the form of occlusions in
images. While these studies used their paradigms to eval-
uate the usefulness of different interpretability methods,
Zimmermann et al. (2023) leveraged them to compare the
interpretability of multiple models. Due to the reliance on
human experiments, they could only probe the interpretabil-
ity of 767 units from nine models. We now automatize this
evaluation to scale it up by multiple orders of magnitude to
more than 70 million units across 835 models.

Automating Interpretability Research To increase the
efficiency of interpretability research and scale it to large
modern-day networks, the concept of automated inter-
pretability was proposed, first in the domain of natural lan-
guage processing (Bills et al., 2023). This approach uses
an LLM to generate textual descriptions of the behavior
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of units in another LLM. Follow-up work by Huang et al.
(2023), however, pointed out potential problems regarding
the correctness of the explanations. To benchmark future
fully automated interpretability tools, acting as independent
agents, Schwettmann et al. (2023) introduced a synthetic
benchmark suite inspired by the behavior of neural networks.
In computer vision, there are also efforts to automate inter-
pretability research (Hernandez et al., 2022; Zimmermann
et al., 2023). Hernandez et al. (2022) and Oikarinen & Weng
(2022) map visual to textual explanations of a unit’s behav-
ior using automated tools, hoping to increase the efficiency
of evaluations. Zimmermann et al. (2023) introduced the
ImageNet Mechanistic Interpretability (IMI) dataset, con-
taining per-unit interpretability annotations from humans
for 767 units, meant to foster research on automating inter-
pretability evaluations.

3. Method
We now introduce our fully automated interpretability
measure, Machine Interpretability Score (MIS), visualized
in Fig. 1. Borowski et al. (2021) proposed a setup that
allows quantifying how well humans can infer the sensitiv-
ity of a unit in a vision model, e.g., a channel in a CNN,
commonly averaged over space, or neuron in an MLP, from
explanations: They leverage a 2-AFC task design in a psy-
chophysics experiment (see left side of Fig. 1) to measure
how well humans understand a unit by probing how well
they can predict which of two extremely activating (query)
images yields a higher activation, after seeing visual expla-
nations. Specifically, two sets of explanations are displayed:
highly and weakly activating images, called positive and
negative explanations, respectively. See Appx. A.1 for a
more detailed summary of the task. We build on top of this
paradigm but replace human participants with machines,
resulting in a fully automated interpretability metric that
requires no humans.

Definition of the Machine Interpretability Score Let
I denote the space of valid input images for a model. For
a specific explanation method and a unit in question, we
denote the unit’s positive and negative visual explanations as
sets of images E+ ⊆ I and E− ⊆ I, respectively. Further,
let Q+ ⊆ I and Q− ⊆ I be the sets of query images with
the most extreme (positive and negative) activations.

The task by Borowski et al. (2021) can now be expressed as:
Given explanations E+ and E− and two queries q+ ∈ Q+

and q− ∈ Q−, which of the two queries matches E+ and
which E− more closely? An intuitive way to solve this
binary decision task is to compare each query with every
explanation and to match the query images to the sets of
explanations based on the similarities of the images.

To formalize this, we introduce a perceptual (image) similar-

ity function f : I × I → R computing the scalar similarity
of two images (Zhang et al., 2018), and an aggregation func-
tion a : RK → R reducing a set of K similarities to a single
one. This allows us to define the function s : I × IK → R
that quantifies the similarity of a single query image to a set
of explanations:

s(q, E) := a ({ f(q, e) | e ∈ E }) . (1)

To decide whether a single query image is more likely to
be the positive one, we can compute whether it is more
similar to the positive than the negative explanations. We
can compute this now for both the positive and the negative
query images and get:

∆+(q
+, E+, E−) = s(q+, E+)− s(q+, E−), (2)

∆−(q
−, E+, E−) = s(q−, E+)− s(q−, E−). (3)

The classification problem will be solved correctly if the
similarity of q+ to E+ relative to E− is stronger than those
of q−. This means we can define the probability of solving
the binary classification problem correctly as

p(q+,q−, E+, E−) := σ
(
α ·

(
∆+(q

+, E+, E−)

−∆−(q
−, E+, E−)

)) (4)

where σ denotes the sigmoid function and α is a free param-
eter to calibrate the classifier’s confidence.

We define the Machine Interpretability Score (MIS) as the
predicted probability of making the right choice, averaged
over N tasks for the same unit. Across these different tasks,
the query images q+,q− vary to cover a wider range of the
unit’s behavior. If the explanation method used is stochastic,
it is advisable to also average over different explanations:

MIS =
1

N

N∑
i

p(q+
i ,q

−
i , E

+
i , E−

i ). (5)

Note that the MIS is not a general property of a unit but de-
pends on the method used for generating explanations. One
might define a general score by computing the maximum
MIS over multiple explanation methods.

Choice of Hyperparameters. We use the current state-of-
the-art perceptual similarity, DreamSim (Fu et al., 2023), as
f . See Appx. B for a sensitivity study on this choice. We
use the mean to aggregate the distances between a query
image and multiple explanations to a single scalar, i.e.,
a(x1, . . . , xK) := 1/K

∑K
i xi. To choose α, we use the in-

terpretability annotations of IMI (Zimmermann et al., 2023):
We optimize α over a randomly chosen subset of just 5% of
the annotated units to approximately match the value range
of human interpretability scores, resulting in α = 0.16.
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Note that α is, in fact, the only free parameter of our metric,
resulting in very low chances of overfitting the metric to the
IMI dataset. We use the same strategy as Borowski et al.
(2021); Zimmermann et al. (2021) and Zimmermann et al.
(2023) for generating new tasks (see Appx. A.2). As they
used up to 20 tasks per unit, we average over N = 20. See
Appx. C for a sensitivity study.

4. Results
This section is structured into two parts: First, we validate
our Machine Interpretability Score (MIS) by showing that it
is well correlated with existing interpretability annotations.
Then, we demonstrate what type of experiments become fea-
sible by having access to such an automated interpretability
measure. Our experiments use the best-working — accord-
ing to human judgements (Borowski et al., 2021) — visual
explanation method, dataset examples, for computing the
MIS. We demonstrate the applicability of our method to
other interpretability methods (e.g., feature visualizations)
in Appx. D. Note that different explanation methods might
require different hyperparameters for computing the MIS.
Both query images and explanations are chosen from the
training set of ImageNet-2012 (Russakovsky et al., 2015).
When investigating layers whose feature maps have spatial
dimensions, we consider the spatial mean over a channel as
one unit (e.g., Borowski et al., 2021). We ignore units with
constant activations from our analysis as there is no behavior
to understand (see Appx. E for details). The code for all
experiments can be found at [URL included in camera-ready
version].

4.1. Validating the Machine Interpretability Score

We validate our MIS measure by using the interpretability
annotations in the IMI dataset (Zimmermann et al., 2023),
which will be referred to as Human Interpretability Scores
(HIS). The per-unit annotations are responses to the 2-AFC
task described in Sec. 3, averaged over ≈ 30 participants.
IMI contains scores for a subset of units for nine models.1

4.1.1. MIS EXPLAINS EXISTING DATA

First, we reproduce the main result of Zimmermann et al.
(2023): A comparison of nine models in terms of their the
per-unit interpretability. We plot the HIS and MIS values
(averaged over all units in a model) in Fig. 2 and find very
strong correlations (Pearson’s r = 0.98 and Spearman’s r =
0.94). Reproducing the model ranking is strong evidence
for the validity of the metric, as no information about these
rankings was explicitly used to create our new measure.

1Zimmermann et al. (2023) investigate nine different models
but test two of them in multiple settings, resulting in 14 distinct
experimental conditions to compare.

Next, we can zoom in and look at individual units instead of
per-model averages. Fig. 3 shows MIS and HIS for all units
of IMI. The left figure clearly shows a strong correlation
(Pearson’s and Spearman’s r = 0.80). The interpretabil-
ity scores in IMI are a (potentially noisy) estimate over a
finite number of annotators. We estimate the ceiling per-
formance due to noise (sampling 30 trials from a Bernoulli
distribution) to equal a Pearson’s r = 0.82 (see Appx. B for
details). The right figure shows an alternative visualization,
which bins the units according to their MIS and averages the
HIS to reduce this noise — highlighting that the two scores
correlate strongly. We can conclude that the MIS explains
existing interpretability annotations well - both on a per-unit
and on a per-model level.
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Fig. 2: MIS Explains Interpretability Model Rankings.
Our proposed Machine Interpretability Score (MIS) explains
existing interpretability annotations (Human Interpretability
Score, HIS) from IMI (Zimmermann et al., 2023) well: It
reproduces the ranking of models presented in IMI while
being fully automated and not requiring any human labor,
as evident by the strong correlation between MIS and HIS.

4.1.2. MIS MAKES NOVEL PREDICTIONS

While the previous results show a strong relation between
MIS and human-perceived interpretability, they are of a de-
scriptive (correlational) nature. To further test the match
between MIS and HIS, we now turn to a causal (interven-
tional) experiment: Instead of predicting the interpretability
of units after a psychophysics evaluation produced their
human scores, we now compute the MIS before conducting
the psychophysics evaluation. We perform our experiment
for two models: GoogLeNet and a ResNet-50. For each
model, IMI contains interpretability scores for 96 randomly
chosen units. We look at all the units not tested so far and
find the 42 units yielding the highest (Easiest, average of
0.99 for both models) and lowest (Hardest, average of 0.63
and 0.59, respectively) MIS, respectively. Then, we use the
same setup as Zimmermann et al. (2023) and perform a psy-
chophysical evaluation on Amazon Mechanical Turk with
236 participants. We compare the HIS for the random units
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Fig. 3: MIS Explains Per-unit Interpretability Annota-
tions. The proposed MIS does not only explain summary
statistics for an entire model (see Fig. 2) but also individual
per-unit interpretability annotations. The left side shows
the calculated MIS and the recorded HIS for every unit in
IMI. For the right side, the data points are grouped by their
MIS into 20 bins of equal count, and the mean and standard
deviation of the HIS are shown (blue). As a guideline, we
display the curve (orange) an ideal metric would produce.

from the IMI dataset and the two newly recorded groups
(easy, hard) of units in Fig. 4. The results are very clear
again: As predicted by the MIS, the HIS is highest for the
easiest and lowest for the hardest units. Further, the HIS
is close to the a priori determined MIS given above. This
demonstrates the strong predictive power of the MIS and its
ability to be used for formulating novel hypotheses.

4.2. Analyzing & Comparing Hundreds of Models

After confirming the validity of the MIS, we now change
gears and show use cases for it, i.e., experiments and anal-
yses that were truly infeasible before due to the high cost,
both time and money, of human evaluations.

4.2.1. COMPARISON OF MODELS

Zimmermann et al. (2023) investigated whether model or
training design choices influence the interpretability of vi-
sion models. Although they invested a considerable amount
of money in this investigation (≥ 12 000USD), they could
only compare nine models via a subset of units. We now
scale up this line of work by two orders of magnitude and
investigate all units of 835 models, almost all of which
come from the well-established computer vision library
timm (Wightman, 2019). See Appx. F for a list of models.
Putting this scale into perspective, achieving the same scale
by scaling up previous human psychophysics experiments
would amount to the absurd costs of more than one billion
USD. Following previous work we ignore the first and last
layers of each model (Zimmermann et al., 2023).

When sorting the models according to their average MIS
(Fig. 5) they span a value range of ≈ 0.80 − 0.91. The
strongest differences across models are present at the tails
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Fig. 4: MIS Allows Detection of (Non-) Interpretable
Units. We use MIS to perform a causal intervention and de-
termine the least (hardest) and most (easiest) interpretable
units in a GoogLeNet and ResNet-50. We then use the
psychophysics setup of Zimmermann et al. (2023) to mea-
sure their interpretability and compare them to randomly
sampled units. Strikingly, the psychophysics results match
the predicted properties: Units with the lowest MIS have
significantly lower interpretability than random units, which
have significantly lower interpretability than those with the
highest MIS. Errorbars denote the 95% confidence interval.

of the ranking. Note that GoogLeNet is ranked as the most
interpretable model, resonating with the community’s in-
terest in GoogLeNet as it is widely claimed to be more
interpretable. The shaded area denotes the 5th to 95th per-
centile of the distribution across units. This reveals a strong
difference in the variability of units for different models;
further, as the upper end of the MIS is similar across models
(≈ 95%), most of the change in the average score seems to
stem from a change in the lower end, with decreasing width
of the per-unit distribution for higher model rank.

To investigate the difference in how the MIS of units is
distributed between different models, we select 15 exem-
plary models and visualize their per-unit MIS distribution
in Fig. 6. Those models were chosen according to the dis-
tance between 5th and 95th percentile (five with highest,
average, and lowest distance). While models with low and
medium variability have unimodal left-skewed distributions,
the ones with high variability have a rather bimodal distribu-
tion. Note that the distribution’s second, stronger mode has
a similar mean and shape to the overall distribution for mod-
els with low variability. The first mode is placed at a value
range slightly above 0.5, corresponding to the chance level
in the task, indicating mostly uninterpretable units. This
suggests that a subset of uninterpretable units (see Fig. 26
for examples) can explain most of the models’ differences
in average MIS. We analyze this further in Fig. 23, where
we compare the models in terms of their worst units. We
see a similar shape as in Fig. 5, but with a larger value range
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Fig. 5: Comparison of the Average Per-unit MIS for Models. We substantially extend the analysis of Zimmermann
et al. (2023) from a noisy average over a few units for a few models to all units of 835 models. The models are compared
regarding their average per-unit interpretability (as judged by MIS); the shaded area depicts the 5th to 95th percentile over
units. We see that all models fall into an intermediate performance regime, with stronger changes in interpretability at the
tails of the model ranking. Models probed by Zimmermann et al. (2023) are highlighted in red.

used, resulting in stronger model differences.
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Fig. 6: Distribution of per-unit MIS for Models. Distribu-
tion of the per-unit MIS for 15 models, which were chosen
based on the size of the error bar in Fig. 5: lowest (top row),
medium (middle row), and highest variability (bottom row).
While most models have an unimodal distribution, those
with high variability have a second mode with lower MIS.

Previous work analyzed a potential correlation between in-
terpretability and downstream classification performance.
However, in a limited evaluation, it was found that better
classifiers are not necessarily more interpretable (Zimmer-
mann et al., 2023). A re-evaluation of this question is per-
formed in Fig. 7 and paints an even darker picture: Here,
better performing ImageNet classifiers are less interpretable
(Pearson’s r = −0.5 and Spearman’s r = −0.55).

Among training procedures and architecture, the analyzed
models also differ in the required resolution of their input.
While previous work focused only on models with a sin-
gle resolution (Zimmermann et al., 2023), we can now see
whether the resolution influences interpretability. However,
Fig. 21 suggests that there is no influence.
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Fig. 7: Relation Between ImageNet Accuracy and MIS.
The average per-unit MIS of a model is anticorrelated with
the model’s top-1 ImageNet classification accuracy.

4.2.2. COMPARISON OF LAYERS

Next, we can zoom into the results of Fig. 5 and investigate
whether there are differences between different layers.

First, we are interested in testing whether the layer type is
important, e.g., are convolutional more interpretable than
normalization or linear layers? In Fig. 8, we sort the models
by their average MIS over all layer types but show individual
points for each of the five most common types (Conv, Linear,
BatchNorm, LayerNorm, and GroupNorm). The number
of points per model may vary, as not all models contain
layers of all types. The figure shows a benefit of Conv
over BatchNorm layers, which themselves are better than
LayerNorm layers. Linear layers, if present, outperform
both Batch- and LayerNorm as well as Conv layers. While
the differences are small, they are statistically significant
due to the large number of scores collected (see Fig. 20).

Second, we analyze whether the location of a layer inside a
model plays a role, e.g., are earlier layers more interpretable
than later ones? The average per-unit MIS (for each layer
type) is shown in Fig. 9 as a function of the relative depth
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Fig. 8: Comparison of the Average Per-unit MIS for Different Layer Types and Models. We show the average
interpretability of units from the most common layer types in vision models (BatchNorm, Conv, GroupNorm, LayerNorm,
Linear). We follow Zimmermann et al. (2023) and restrict our analysis of Vision Transformers to the linear layers in each
attention head. While not every layer type is used by every model, we still see some separation between types (see Fig. 20
for significance results): Linear and convolutional layers mostly outperform normalization layers. Models are sorted by
average per-unit interpretability, as in Fig. 5.
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Fig. 9: Deeper Layers are More Interpretable. Average
MIS per layer as a function of the relative depth of the layer
within the network, grouped by layer types. For type, the
values are grouped into 30 bins of equal count based on the
relative depth; values shown correspond to the bin average.

of the layer. A value of zero corresponds to the first and
a value of one to the last layer analyzed. The scores are
averaged in bins of equal count defined by the relative layer
depth to enhance readability. The resulting curves all follow
a similar pattern: They start high, decrease in the first fifth,
then increase steadily until they drop in the last tenth again,
resulting in an almost sinusoidal shape.

Third, it is interesting to probe the influence of the width of
layers on their average interpretability. Based on the super-
position hypothesis (Elhage et al., 2022; Olah et al., 2020;
Arora et al., 2018; Goh, 2016), one might expect wider lay-
ers to be more interpretable as features do not have to form
in superposition (i.e., as polysematic units) but can arise in
a disentangled form (i.e., as monosemantic units). Fig. 10
shows the relation between MIS and relative layer width.
We use the relative rather than the absolute width to reduce
the influence of the overall model and show the results of
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Fig. 10: Wider Layers are More Interpretable. Aver-
age MIS per layer as a function of the relative width of the
layer compared to all layers of the same type in the net-
work, grouped by layer types. For each type, the values
are grouped into 5 bins of equal count based on the relative
layer width; the values shown correspond to the bin average.

models with different architectures on the same axis. Note
that, nevertheless, there might be other confounding factors
correlated with the width e.g., the layer depth. While we see
moderate correlations for Conv and BatchNorm layers, the
one for Linear layers is much stronger. It is unclear what
causes this difference in behavior. However, we see this as
a hint that one way to increase a model’s interpretability is
to increase the width (and not the number) of layers.

4.3. How Does the MIS Change During Training?

In the last set of experiments, we demonstrate how the MIS
can be used to analyze models in a fine-grained way and
obtain insights into their training dynamics. For this, we
train a ResNet-50 on ImageNet-2012, following the training
recipe A3 of Wightman et al. (2021), for 100 epochs.

Fig. 12 shows how the average per-unit MIS (left) changes
during the training. Notably, the initial MIS (of the un-
trained network) is already substantially above chance level.
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Fig. 11: Change of Interpretability per Layer During Training. To better understand the peak in interpretability after the
first training epoch found in Fig. 12, we display the change in MIS during the first epoch, averaged over each layer. Note
that layers are sorted by depth from left to right, and different colors encode different layer types. While the change in
interpretability is moderately correlated with a layer’s depth, we consistently see big improvements for the last BatchNorm
layer of each block (i.e., BatchNorm-*-*-3). For an extended visualization covering the full training, see Fig. 22.

0 25 50 75 100
Training Epoch

0.75

0.80

0.85

0.90

M
IS

0 20 40 60 80
ImageNet Top-1 Accuracy

Fig. 12: Change of Interpretability During Training.
For a ResNet-50 trained for 100 epochs on ImageNet, we
track the MIS and top-1 accuracy after every epoch (epoch
0 refers to random initialization). While the MIS improves
drastically in the first epoch, it monotonically decreases
during the rest of the training (left). This results in an
antiproportional relation between MIS and accuracy (right).

However, during the first epoch, the MIS still increases dras-
tically to values around 0.93. Then, during the rest of the
training, the score slowly decays. This indicates non-trivial
dynamics of feature learning, which we analyze in Fig. 11.
When showing the MIS as a function of ImageNet top-1
accuracy during training (right), a strong anticorrelation (ig-
noring the first points) becomes evident. This is in line with
Fig. 7, also showing an anticorrelation.

To better understand the dynamics through the training —
most importantly during the first epoch — we zoom in
to find out which units cause this strong change in MIS.
Fig. 11 shows the change in MIS during the first epoch
for each layer separately (ordered by their depth within the
network). Surprisingly, we see that the change in MIS is
dominated by a set of BatchNorm layers, namely the last
ones of each ResNetBlock, whose MIS increases drastically.
Moreover, we detect a small trend of later layers improving
more strongly than earlier ones but generally do not see a
difference between Conv and BatchNorm layers.

5. Conclusion
This paper presented the first fully automated intepretability
metric for vision models: the machine interpretability score

(MIS). We verified its alignment to human interpretability
score (HIS) through both correlational and interventional
experiments. We expect our MIS to enable experiments pre-
viously considered infeasible due to the costly reliance on
human evaluations. To stress this, we demonstrated the met-
ric’s usefulness for formulating and testing new hypotheses
about a network’s behavior through a series of experiments:
Based on the largest comparison of vision models in terms
of their per-unit interpretability so far, we investigated poten-
tial influences on their interpretability, such as layer depth
and width. Most importantly, we find an anticorrelation
between a model’s downstream performance and its per-unit
interpretability. Further, we performed the first detailed
analysis of how the interpretability changes during training.

While this paper considerably advances the state of inter-
pretability evaluations, there are some open questions and
potential future research directions. Most importantly, the
performance of our MIS on a per-unit level is close to the
noise ceiling determined by the limited number of human
interpretability annotations available. This means that future
changes in the MIS measure (e.g., based on other image per-
ceptual similarities) might require additional human labels
to determine the significance of performance improvements.
Additional human labels could also be leveraged to improve
the MIS by following Fu et al. (2023) to fine-tune the im-
age similarity directly on human judgments. In another
direction, using vision language models for computing the
MIS could be interesting as this might, in addition to a nu-
merical score, also provide a textual description of a unit’s
sensitivity (Hernandez et al., 2022). Finding a differentiable
approximation of the MIS will be valuable for explicitly
training models to be interpretable (Zimmermann et al.,
2023). Note that while this paper looked at the interpretabil-
ity of channels and neurons, it can also be used for analyzing
arbitrary directions in activation space. Thus, we expect the
MIS to also be valuable for researchers generally looking
for more interpretable representations of (artificial) neural
activations (e.g., Graziani et al., 2023). Finally, exploring
whether this concept of interpretability quantification can
be expanded to LLMs is an exciting direction.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning, specifically the field of Interpretable
Machine Learning. The main contribution of our work is
the presentation of a more time- and cost-efficient approach
for quantifying how well humans can understand neural
activations. A potential risk in automating interpretability
research is that we will start optimizing for metrics that are
never fully aligned with human judgments. It is conceiv-
able that this will encourage the design of models that ace
our metric but whose inner workings and decision making
processes are still obscure to human observers. This would
set false goal posts and potentially come with safety risks if
a high score in MIS were mistaken for a white box model
that comes with higher trustworthiness. Beyond that, we
see many potential use cases for this result (see Sec. 5), that
can all advance the state of machine learning. There are
potential societal consequences of our work, however, none
of which we feel must be specifically highlighted here.
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A. Description of the 2-AFC Task
A.1. Task Design

Our proposed MIS builds on the 2-AFC task designed by Borowski et al. (2021) to conduct human psychophysics
experiments. An example of such a task is given in Fig. 13.

This task aims to probe how well (human) participants can detect the sensitivity of a unit of a neural network based on
visual explanations of it. Understanding the unit’s sensitivity should allow participants to distinguish between a stimulus
eliciting highly activating from one yielding low activation. Therefore, the task shows the participants two such images,
called query images, and asks them to pick the image eliciting higher activation. To solve the task, participants also see
two sets of visual explanations: Positive explanations describe the patterns the unit activates strongly for, while negative
activations show patterns the unit weakly responds to. For solving this task, there are two potential strategies: Participants
can either recognize a common pattern of the positive explanations in one of the query images, making this the correct
choice. Or they detect a common pattern of the negative explanations in a query image, making the other one the right
choice. See Borowski et al. (2021); Zimmermann et al. (2021) or Zimmermann et al. (2023) for alternative descriptions and
visualizations of the task.

Negative Explanations Positive Explanations

Queries

Negative Explanations Positive Explanations

Queries

Fig. 13: Examples of the 2-AFC Task. For two different units of GoogLeNet one task each is shown. Every task contains
a set of negative (left) and positive (right) visual explanations describing which visual feature the unit is sensitive to. In
the center, two query images in the form of strongly and weakly activating dataset examples are shown, respectively. This
means that each one of the two query images corresponds to the positive and the other to the negative explanations. The task
is now to choose which query image corresponds to the positive ones.

A.2. Task Construction

For constructing tasks, we follow Zimmermann et al. (2023). Specifically, this means that we use K = 9 (positive and
negative) explanations in each task. We restrict explanations to natural dataset examples to reduce complexity but note that
the same setup can also be applied to other visual explanations, such as feature visualizations. To choose query images
and explanations, we proceed as follows: For each unit, we determine the N · (K + 1) most and least activating images,
respectively. Out of these, the N ·K most extreme images are used as explanations, the others as query images. The N ·K
potential explanation images are uniformly distributed across tasks according to their elicited activation level (see (Borowski
et al., 2021; Zimmermann et al., 2023) for more details).
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B. Influence of the Underlying Perceptual Similarity on the Machine Interpretability Score
As stated in Sec. 3, we used DreamSim (Fu et al., 2023) as the underlying perceptual similarity f for all experiments
shown so far. We now repeat the experiments on IMI in Sec. 4.1.1 with two alternative similarity measures: LPIPS (Zhang
et al., 2018) and DISTS (Ding et al., 2022). While all three measures are based on learned image features, DreamSim
leverages an ensemble of modern vision models trained on larger datasets compared to LPIPS and DISTS, which use
AlexNet (Krizhevsky et al., 2012) and VGG16 (Simonyan & Zisserman, 2015) trained on ImageNet, respectively. According
to Fu et al. (2023), DreamSim clearly outperforms LPIPS and DISTS on image similarity benchmarks.

When comparing MIS based on DreamSim with one based on LPIPS and DISTS on a per-model level (see Fig. 14) one sees
very similar results and strong correlations between each MIS and HIS. This might suggest that the choice of the similarity
function to use has little influence on the quality of MIS. The picture, however, changes when zooming in and looking at
per-unit interpretability (see Fig. 16). Now, it becomes evident that the MIS based on DreamSim outperforms that based on
LPIPS and DISTS, indicated by the higher correlation and smaller spread of the point cloud. We, therefore, conclude that
DreamSim is the best perceptual similarity available for computing machine interpretability scores.

To put the difference in performance between the perceptual similarities on a per-unit level into context, we estimate the
noise ceiling of the data: As the HIS for a single unit is a (potentially) noisy estimate over (up to 30) human decisions,
it has some uncertainty. To take this into account, we run a statistical simulation, in which we model individual human
responses as binary decisions from a Bernoulli distribution whose mean equals the unit’s HIS. We can now simulate human
decisions by sampling from the distribution. Then, we compute the correlation between MIS and simulated HIS and repeat
the process 1 000 times. The resulting noise ceiling is compared to the correlations obtained when using LPIPS, DISTS, and
DreamSim in Fig. 15. We see that DreamSim’s performance is very close to the noise ceiling for estimating the per-unit
human interpretability.
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Fig. 14: LPIPS and DISTS Perform Similarly as DreamSim when Comparing Models. We compare DreamSim with
two earlier perceptual similarity metrics, LPIPS and DISTS. All three lead to similar results on IMI (cf. Fig. 2). See Fig. 16
for comparing these similarity functions on a per-unit level. standard deviation.

C. Sensitivity of the MIS on the Number of Tasks
As described in Sec. 3, we compute the MIS by averaging over N = 20 tasks. This choice was initially motivated by
previous work by Borowski et al. (2021). We investigate now how this choice influences the MIS. For this, we perform two
experiments for GoogLeNet (see Fig. 17). First, we use the method for constructing tasks described before in Appx. A.2 to
create 20 tasks per unit and then compute how the MIS changes when only using the first i = 1, . . . , 19 tasks compared
to all 20. While this setting is straightforward to analyze, it does not reflect how the number of tasks influences the MIS
computation in practice: Using the task creation above, the chosen number of tasks influences the creation of all tasks, e.g.,
adding one more task changes which images are used for previous tasks. Therefore, in the second experiment, we again
measure how the MIS changes when using i = 1, . . . , 19 tasks compared to 20, but recreate all tasks when increasing their
number. For both settings, we see that the residual converges to zero, with a slower convergence in the more realistic setting.
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Fig. 15: Best Perceptual Similarity Approaches Noise Ceiling. Considering the noise ceiling, caused by the inherent
uncertainty of the HIS, the best perceptual similarity (DreamSim) shows an almost perfect performance. The black bar and
shaded area show the mean correlation and standard deviation over 1 000 simulations, respectively.
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Fig. 16: LPIPS and DISTS Perform Worse than DreamSim when Comparing Individual Units. We compare DreamSim
with two earlier perceptual similarity metrics, LPIPS and DISTS. While LPIPS and DISTS perform similarly to DreamSim
on a per-model level of IMI (cf. Fig. 16), they lead to worse performance on a per-unit level.
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(a) New tasks do not influence earlier tasks.
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Fig. 17: Convergence of MIS. We investigate how MIS changes depending on the number of tasks N that it is computed
over. Here, we distinguish between two settings. In (a), we simulate that adding another task does not change the selection
of query images and explanations in earlier tasks; in (b), this is not the case. While the former is easier to analyze due to a
reduced level of randomness, note that the latter is the more relevant setting in practice. For both cases, we visualize the
average absolute difference in MIS estimated for < 20 and N = 20 tasks.
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D. Applying MIS for Different Explanation Methods
The experiments in Sec. 4 compute the MIS for one type of explanation, namely strongly activating dataset examples. We
now demonstrate that the same approach easily generalizes to other visual explanations: feature visualizations. We do not
tune any hyperparameters but re-use the same as presented in Sec. 3 for dataset examples as explanations. In Fig. 18 we
repeat the experiment from Fig. 2 and again see a strong correlation between MIS and HIS.
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Fig. 18: MIS Generalizes Well to Other Explanation Types. We find a high correlation between MIS and HIS for other
explanation types (feature visualizations). See Fig. 2 for the corresponding results for using natural dataset examples as
explanations.

E. Analysis of Constant Units
After training a network, it might happen that some of its units effectively become non-active/constant for any relevant
image. We here call a unit constant if the difference between maximally and minimally elicited activation by the entire
ImageNet-2012 training set is less than 10−8. As mentioned at the beginning of Sec. 4, we excluded those units in our
analysis, as they do not present any interesting behavior that is worth understanding. Note that this does not mean that it will
not be interesting to understand why such units exist. In Fig. 19, we display the ratio of constant units for each model. For
most models, we see a low number of constant units: Specifically, we see that out of the 835 models investigated, 256 do not
contain any constant units, 89 contain more than 1% and 22 more than 5%. Note that we here used the same notion of
units as in the rest of the paper, meaning that we take the spatial mean of feature maps with spatial dimensions (e.g., for
convolutional layers).
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Fig. 19: Ratio of Constant Units. We compute the ratio of units constant with respect to the input (over the training set of
ImageNet-2012) for all models considered. While the ratio is low for most models, it becomes large for a few models.
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F. Details on Models
In addition to the 9 models investigated by Zimmermann et al. (2023) (GoogLeNet, ResNet-50, Clip ResNet-50, Robust (L2) ResNet-50,
DenseNet-101, WideResNet-50, Clip ViT-B32. ViT-B32), we include one more model suggested by them (Robust (L2) ResNet-50) and 825 models from timm (Wightman,
2019):

xcit tiny 12 p16 224.fb in1k, vit tiny patch16 384.augreg in21k ft in1k, pit xs 224.in1k, repghostnet 111.in1k, regnetz c16 evos.ch in1k, poolformer m48.sail in1k,
repghostnet 080.in1k, volo d3 448.sail in1k, vit base patch16 224.augreg in21k ft in1k, regnety 320.tv2 in1k, densenet121.ra in1k, mobilenetv3 large 100.ra in1k,
repghostnet 150.in1k, seresnext26ts.ch in1k, regnety 160.swag ft in1k, hrnet w40.ms in1k, convnext small.in12k ft in1k, vit base patch16 224.sam in1k, seresnex-
taa101d 32x8d.sw in12k ft in1k 288, vit tiny r s16 p8 384.augreg in21k ft in1k, regnety 320.pycls in1k, cs3darknet m.c2ns in1k, vit tiny patch16 224.augreg in21k ft in1k,
resnet101c.gluon in1k, convnextv2 atto.fcmae ft in1k, flexivit base.600ep in1k, xcit small 12 p16 384.fb dist in1k, mobilenetv2 050.lamb in1k, flexivit base.300ep in1k,
resnext50 32x4d.tv in1k, resnet152.tv in1k, seresnext26d 32x4d.bt in1k, fbnetv3 g.ra2 in1k, poolformer s36.sail in1k, resnext101 32x8d.tv in1k, rexnet 130.nav in1k,
efficientvit b2.r224 in1k, convnext small.fb in22k ft in1k 384, resnet50 gn.a1h in1k, eva02 small patch14 336.mim in22k ft in1k, regnety 032.ra in1k, res2net50d.in1k,
convit small.fb in1k, regnetx 160.pycls in1k, convnextv2 large.fcmae ft in22k in1k 384, tf efficientnet b0.ns jft in1k, pit ti 224.in1k, volo d1 384.sail in1k,
xcit small 12 p8 384.fb dist in1k, dpn131.mx in1k, resnext101 64x4d.gluon in1k, densenet169.tv in1k, resnet101d.ra2 in1k, repghostnet 200.in1k, resnet18.a2 in1k,
xcit small 12 p16 224.fb in1k, pvt v2 b3.in1k, dm nfnet f1.dm in1k, vit large patch32 384.orig in21k ft in1k, convnextv2 tiny.fcmae ft in22k in1k 384, gcres-
net50t.ra2 in1k, nf regnet b1.ra2 in1k, volo d1 224.sail in1k, resnet50.ram in1k, hrnet w18 small v2.ms in1k, convnext base.clip laion2b augreg ft in1k, reg-
netx 160.tv2 in1k, sequencer2d l.in1k, convnext large.fb in22k ft in1k, botnet26t 256.c1 in1k, gc efficientnetv2 rw t.agc in1k, wide resnet50 2.racm in1k,
halonet50ts.a1h in1k, cspresnext50.ra in1k, resnetv2 50d evos.ah in1k, tf efficientnetv2 b3.in21k ft in1k, resnet152.gluon in1k, lambda resnet26rpt 256.c1 in1k,
fastvit sa24.apple dist in1k, xcit medium 24 p8 384.fb dist in1k, repvit m0 9.dist 450e in1k, regnetx 320.pycls in1k, seresnextaa101d 32x8d.sw in12k ft in1k,
efficientvit b2.r288 in1k, convnext tiny.in12k ft in1k, xcit large 24 p16 384.fb dist in1k, resnetv2 50.a1h in1k, coatnet 0 rw 224.sw in1k, efficientnet es pruned.in1k,
dla60 res2net.in1k, efficientformer l7.snap dist in1k, cait xxs24 224.fb dist in1k, vit small patch16 224.augreg in21k ft in1k, tf efficientnet cc b1 8e.in1k, effi-
cientvit b1.r288 in1k, halonet26t.a1h in1k, mixnet m.ft in1k, hrnet w44.ms in1k, regnety 160.tv2 in1k, xcit nano 12 p8 384.fb dist in1k, seresnext101 32x8d.ah in1k,
efficientvit b2.r256 in1k, vit base patch16 clip 224.laion2b ft in12k in1k, tf efficientnet lite2.in1k, deit3 small patch16 224.fb in1k, hrnet w18 ssld.paddle in1k,
tf efficientnet b2.aa in1k, crossvit 15 dagger 240.in1k, deit3 small patch16 224.fb in22k ft in1k, haloregnetz b.ra3 in1k, tf efficientnetv2 b0.in1k, eca nfnet l0.ra2 in1k,
twins pcpvt small.in1k, ecaresnet50t.ra2 in1k, fastvit sa12.apple dist in1k, skresnext50 32x4d.ra in1k, resnet50d.a2 in1k, vit base patch32 clip 224.laion2b ft in1k,
resnetblur50.bt in1k, vit base patch16 224.orig in21k ft in1k, resnet50.a1h in1k, hardcorenas e.miil green in1k, coatnext nano rw 224.sw in1k, con-
vnext base.clip laiona augreg ft in1k 384, tresnet m.miil in1k 448, resnet10t.c3 in1k, poolformerv2 m48.sail in1k, tf efficientnet b1.aa in1k, edgenext base.usi in1k,
tf efficientnet es.in1k, tresnet l.miil in1k 448, resnet152.a1h in1k, mixnet s.ft in1k, resnet50.am in1k, rexnet 100.nav in1k, xcit large 24 p8 224.fb dist in1k,
deit3 base patch16 224.fb in22k ft in1k, xcit tiny 24 p8 384.fb dist in1k, coat lite medium 384.in1k, focalnet small srf.ms in1k, vit base patch8 224.augreg in21k ft in1k,
convnext tiny hnf.a2h in1k, visformer small.in1k, vit small r26 s32 384.augreg in21k ft in1k, vgg16 bn.tv in1k, eca nfnet l1.ra2 in1k, xcit small 12 p8 224.fb in1k,
beitv2 base patch16 224.in1k ft in22k in1k, cs3edgenet x.c2 in1k, vit base patch16 clip 384.laion2b ft in12k in1k, xcit small 12 p16 224.fb dist in1k, con-
vformer b36.sail in1k 384, bat resnext26ts.ch in1k, caformer b36.sail in1k, dla34.in1k, crossvit 18 dagger 240.in1k, tf efficientnetv2 s.in21k ft in1k, focal-
net base srf.ms in1k, convformer b36.sail in22k ft in1k 384, resnet34.tv in1k, resmlp 24 224.fb distilled in1k, convnext base.clip laion2b augreg ft in12k in1k,
caformer s18.sail in1k 384, resnetaa50.a1h in1k, beitv2 base patch16 224.in1k ft in1k, convformer m36.sail in22k ft in1k, inception resnet v2.tf ens adv in1k,
mobilenetv2 110d.ra in1k, resnext101 32x4d.fb swsl ig1b ft in1k, regnetx 008.tv2 in1k, convnext small.in12k ft in1k 384, levit conv 128.fb dist in1k,
volo d3 224.sail in1k, nest tiny jx.goog in1k, mobileone s2.apple in1k, fastvit t8.apple dist in1k, halo2botnet50ts 256.a1h in1k, mobilenetv2 140.ra in1k,
caformer m36.sail in1k, seresnet50.ra2 in1k, hardcorenas d.miil green in1k, convformer b36.sail in1k, regnety 320.swag ft in1k, volo d4 448.sail in1k,
tf efficientnet b2.ns jft in1k, sebotnet33ts 256.a1h in1k, vit small patch32 224.augreg in21k ft in1k, vit base patch32 224.sam in1k, resnetv2 50d gn.ah in1k,
mobileone s4.apple in1k, coat small.in1k, tf mixnet l.in1k, resnet34.a2 in1k, regnetx 032.pycls in1k, resnetaa101d.sw in12k ft in1k, lcnet 100.ra2 in1k, repvgg b1.rvgg in1k,
crossvit 15 240.in1k, edgenext x small.in1k, repvit m1 5.dist 300e in1k, hardcorenas a.miil green in1k, efficientformer l1.snap dist in1k, tf mobilenetv3 large 075.in1k,
hrnet w18 small.ms in1k, tf efficientnet b2.in1k, ghostnetv2 130.in1k, ecaresnet26t.ra2 in1k, fastvit s12.apple in1k, xcit tiny 12 p8 224.fb dist in1k, tres-
net m.miil in21k ft in1k, fastvit sa24.apple in1k, resnetrs200.tf in1k, convnextv2 nano.fcmae ft in1k, resnet50.ra in1k, resnet34.bt in1k, regnety 002.pycls in1k,
focalnet base lrf.ms in1k, dla102.in1k, regnetz e8.ra3 in1k, pvt v2 b0.in1k, xcit medium 24 p8 224.fb in1k, regnety 640.seer ft in1k, resnet200d.ra2 in1k,
caformer s36.sail in1k 384, deit3 small patch16 384.fb in22k ft in1k, eca resnext26ts.ch in1k, vgg13.tv in1k, tf efficientnet lite0.in1k, resnet50.b1k in1k, dla60 res2next.in1k,
repvit m1 1.dist 300e in1k, convnext base.fb in22k ft in1k, tf efficientnet cc b0 4e.in1k, ese vovnet19b dw.ra in1k, resnetv2 152x2 bit.goog teacher in21k ft in1k,
deit base distilled patch16 384.fb in1k, resnet101d.gluon in1k, convnext large.fb in22k ft in1k 384, darknet53.c2ns in1k, poolformerv2 s36.sail in1k, con-
vformer m36.sail in22k ft in1k 384, gmlp s16 224.ra3 in1k, convformer s18.sail in1k, efficientnet em.ra2 in1k, inception v3.gluon in1k, resmlp 12 224.fb in1k,
tresnet l.miil in1k, ecaresnet101d pruned.miil in1k, resnet152.a2 in1k, vit small patch32 384.augreg in21k ft in1k, inception v3.tf adv in1k, repghost-
net 130.in1k, levit conv 384.fb dist in1k, repvit m1 5.dist 450e in1k, efficientnet el.ra in1k, seresnet50.a2 in1k, pit s distilled 224.in1k, cspdarknet53.ra in1k,
tf efficientnet cc b0 8e.in1k, densenet201.tv in1k, resnext50 32x4d.a1 in1k, cs3sedarknet l.c2ns in1k, cait s24 384.fb dist in1k, spnasnet 100.rmsp in1k,
res2net50 14w 8s.in1k, repvgg d2se.rvgg in1k, regnetx 032.tv2 in1k, crossvit 18 dagger 408.in1k, pit b distilled 224.in1k, cs3darknet focus l.c2ns in1k,
resnet50.bt in1k, vgg11.tv in1k, convnextv2 femto.fcmae ft in1k, convnext nano.in12k ft in1k, resnext101 64x4d.tv in1k, convnext nano.d1h in1k, cspres-
net50.ra in1k, tf mixnet m.in1k, xcit tiny 12 p16 384.fb dist in1k, seresnet50.a1 in1k, efficientnetv2 rw t.ra2 in1k, resnet152d.gluon in1k, regnety 032.tv2 in1k,
inception resnet v2.tf in1k, eva large patch14 196.in22k ft in1k, pvt v2 b1.in1k, convformer m36.sail in1k 384, densenet161.tv in1k, dla102x.in1k, ed-
genext small rw.sw in1k, regnety 016.tv2 in1k, convnextv2 base.fcmae ft in1k, vit large patch14 clip 336.laion2b ft in12k in1k, levit conv 128s.fb dist in1k,
hrnet w48.ms in1k, resnet101.a1h in1k, xcit medium 24 p8 224.fb dist in1k, resnetrs152.tf in1k, convnextv2 nano.fcmae ft in22k in1k, convnextv2 tiny.fcmae ft in22k in1k,
resnext50d 32x4d.bt in1k, gernet s.idstcv in1k, selecsls42b.in1k, repvit m3.dist in1k, resnest50d 1s4x24d.in1k, dpn98.mx in1k, xcit nano 12 p16 224.fb in1k,
regnetx 016.pycls in1k, xcit medium 24 p16 224.fb in1k, caformer s18.sail in1k, sehalonet33ts.ra2 in1k, tinynet c.in1k, xcit tiny 24 p16 224.fb dist in1k, flex-
ivit small.300ep in1k, resnext101 32x8d.tv2 in1k, convnextv2 base.fcmae ft in22k in1k 384, semnasnet 075.rmsp in1k, res2net50 26w 4s.in1k, cait xxs24 384.fb dist in1k,
mobilenetv2 120d.ra in1k, seresnext26t 32x4d.bt in1k, flexivit base.1200ep in1k, res2net50 26w 6s.in1k, vit base patch16 clip 384.openai ft in12k in1k,
nest base jx.goog in1k, ecaresnetlight.miil in1k, repvgg b0.rvgg in1k, ecaresnet50t.a1 in1k, inception next tiny.sail in1k, regnety 032.pycls in1k,
mixer b16 224.miil in21k ft in1k, poolformer s12.sail in1k, vit base patch32 clip 384.openai ft in12k in1k, vit base patch32 384.augreg in21k ft in1k, effi-
cientvit b1.r224 in1k, vit base patch16 clip 384.laion2b ft in1k, deit small distilled patch16 224.fb in1k, efficientvit b0.r224 in1k, resnest50d.in1k, regnety 120.pycls in1k,
semnasnet 100.rmsp in1k, wide resnet50 2.tv in1k, xcit small 24 p16 224.fb in1k, resnet101.a3 in1k, fastvit t12.apple in1k, tf efficientnet lite1.in1k, tinynet a.in1k,
resmlp big 24 224.fb distilled in1k, cs3se edgenet x.c2ns in1k, resnetv2 152x2 bit.goog teacher in21k ft in1k 384, resnext50 32x4d.tv2 in1k, efficientnet b2.ra in1k,
convformer s18.sail in22k ft in1k 384, caformer s18.sail in22k ft in1k 384, deit3 base patch16 224.fb in1k, vit base patch32 clip 384.laion2b ft in12k in1k,
vit medium patch16 gap 384.sw in12k ft in1k, sequencer2d s.in1k, mobileone s0.apple in1k, edgenext base.in21k ft in1k, deit3 medium patch16 224.fb in1k,
efficientformerv2 l.snap dist in1k, lambda resnet50ts.a1h in1k, xception41p.ra3 in1k, resnext50 32x4d.a3 in1k, crossvit small 240.in1k, repvgg a1.rvgg in1k,
resnet51q.ra2 in1k, xcit small 24 p16 384.fb dist in1k, vit base patch32 clip 224.openai ft in1k, flexivit large.300ep in1k, repvgg b3g4.rvgg in1k, resnext50 32x4d.a1h in1k,
coat lite medium.in1k, vit base patch32 clip 448.laion2b ft in12k in1k, resnext50 32x4d.gluon in1k, repvgg b2.rvgg in1k, vit base patch16 rpn 224.sw in1k,
mixer b16 224.goog in21k ft in1k, resnet50.c2 in1k, lamhalobotnet50ts 256.a1h in1k, tiny vit 21m 512.dist in22k ft in1k, xcit large 24 p16 224.fb dist in1k,
repvgg a2.rvgg in1k, gernet l.idstcv in1k, mobilevitv2 050.cvnets in1k, convnextv2 base.fcmae ft in22k in1k, resnet18.a3 in1k, ecaresnet50d.miil in1k, coat lite small.in1k,
convnext xlarge.fb in22k ft in1k, mobilevitv2 075.cvnets in1k, cait s36 384.fb dist in1k, efficientformerv2 s1.snap dist in1k, resnet18.fb swsl ig1b ft in1k, mo-
bileone s1.apple in1k, resnet61q.ra2 in1k, tf efficientnetv2 b3.in1k, mobilevitv2 175.cvnets in1k, convnext tiny.fb in22k ft in1k 384, crossvit tiny 240.in1k,
caformer b36.sail in22k ft in1k 384, resnet152d.ra2 in1k, convit base.fb in1k, tinynet b.in1k, deit3 large patch16 384.fb in22k ft in1k, regnetx 004 tv.tv2 in1k,
cait xxs36 384.fb dist in1k, convnext nano ols.d1h in1k, efficientnet lite0.ra in1k, inception v4.tf in1k, hrnet w18.ms in1k, gernet m.idstcv in1k, con-
vformer s36.sail in22k ft in1k 384, deit tiny distilled patch16 224.fb in1k, deit small patch16 224.fb in1k, vit large patch14 clip 336.laion2b ft in1k, crossvit 18 240.in1k,
resnet26.bt in1k, resnet18.a1 in1k, deit3 base patch16 384.fb in22k ft in1k, convformer s36.sail in1k, convnext small.fb in22k ft in1k, selecsls60b.in1k, ef-
ficientnet b0.ra in1k, focalnet tiny srf.ms in1k, ecaresnet101d.miil in1k, regnetx 080.tv2 in1k, mobileone s3.apple in1k, mobilenetv3 rw.rmsp in1k, pool-
formerv2 m36.sail in1k, seresnextaa101d 32x8d.ah in1k, levit conv 192.fb dist in1k, focalnet tiny lrf.ms in1k, regnety 320.swag lc in1k, tresnet v2 l.miil in21k ft in1k,
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seresnet50.a3 in1k, dla46x c.in1k, cs3darknet x.c2ns in1k, tf efficientnet b0.ap in1k, vit base patch16 224.augreg2 in21k ft in1k, resnext101 32x8d.fb ssl yfcc100m ft in1k,
xcit large 24 p8 384.fb dist in1k, tinynet e.in1k, cait xs24 384.fb dist in1k, fastvit sa12.apple in1k, hrnet w64.ms in1k, regnety 016.pycls in1k, wide resnet101 2.tv2 in1k,
beitv2 large patch16 224.in1k ft in22k in1k, hrnet w30.ms in1k, resnet101.tv in1k, repvit m2.dist in1k, coatnet nano rw 224.sw in1k, flexivit small.1200ep in1k,
tf efficientnet b0.in1k, tf efficientnet b1.in1k, efficientformer l3.snap dist in1k, vit base patch16 384.augreg in21k ft in1k, xcit tiny 24 p8 224.fb dist in1k, dla102x2.in1k,
hardcorenas f.miil green in1k, regnety 064.ra3 in1k, resnext101 32x4d.gluon in1k, tf efficientnetv2 b2.in1k, resnet32ts.ra2 in1k, xcit tiny 12 p8 384.fb dist in1k,
inception v3.tv in1k, xcit large 24 p16 224.fb in1k, ecaresnet50t.a3 in1k, repvit m2 3.dist 450e in1k, fbnetv3 b.ra2 in1k, vit base patch8 224.augreg2 in21k ft in1k,
cs3darknet l.c2ns in1k, convnext base.clip laion2b augreg ft in12k in1k 384, regnety 160.deit in1k, regnety 160.pycls in1k, dla60x.in1k, xcit tiny 24 p16 384.fb dist in1k,
eva02 tiny patch14 336.mim in22k ft in1k, volo d2 224.sail in1k, regnety 160.swag lc in1k, vit base patch32 clip 224.laion2b ft in12k in1k, tf mixnet s.in1k,
repvit m1 0.dist 300e in1k, convnextv2 large.fcmae ft in1k, resmlp 12 224.fb distilled in1k, xcit medium 24 p16 384.fb dist in1k, regnety 080 tv.tv2 in1k, dpn107.mx in1k,
inception v3.tf in1k, dpn68.mx in1k, efficientnet es.ra in1k, mnasnet 100.rmsp in1k, resnet101.tv2 in1k, res2next50.in1k, vit base patch16 clip 384.openai ft in1k,
tf efficientnet b1.ns jft in1k, flexivit small.600ep in1k, visformer tiny.in1k, resnet50.a1 in1k, dla60.in1k, regnetz d32.ra3 in1k, senet154.gluon in1k, efficient-
netv2 rw s.ra2 in1k, focalnet small lrf.ms in1k, seresnet33ts.ra2 in1k, fbnetc 100.rmsp in1k, resnet18d.ra2 in1k, resnet34.a3 in1k, dla60x c.in1k, efficient-
net b1 pruned.in1k, efficientformerv2 s2.snap dist in1k, resnet50s.gluon in1k, resnet101.a2 in1k, regnety 040.ra3 in1k, convmixer 1536 20.in1k, regnety 008 tv.tv2 in1k,
resnet152.a1 in1k, mixnet l.ft in1k, gcresnext26ts.ch in1k, vit base patch16 clip 224.openai ft in1k, fastvit ma36.apple in1k, vgg16.tv in1k, gcresnext50ts.ch in1k,
xcit tiny 12 p16 224.fb dist in1k, regnety 008.pycls in1k, resmlp 36 224.fb distilled in1k, regnetz 040 h.ra3 in1k, inception next base.sail in1k, dm nfnet f0.dm in1k,
resnet50.d in1k, efficientnet b2 pruned.in1k, resnet18.tv in1k, rexnet 150.nav in1k, convnext large mlp.clip laion2b soup ft in12k in1k 320, ghostnetv2 160.in1k,
vit small patch16 384.augreg in21k ft in1k, convnext xlarge.fb in22k ft in1k 384, mobilenetv3 small 075.lamb in1k, regnetz d8 evos.ch in1k, dm nfnet f3.dm in1k,
repvgg b3.rvgg in1k, convnext large mlp.clip laion2b augreg ft in1k 384, dpn68b.mx in1k, resnext101 32x8d.fb wsl ig1b ft in1k, deit3 large patch16 384.fb in1k,
convformer s18.sail in1k 384, repghostnet 058.in1k, fastvit sa36.apple dist in1k, resnext50 32x4d.a2 in1k, regnetx 040.pycls in1k, vit base r50 s16 384.orig in21k ft in1k,
vit base patch16 clip 224.laion2b ft in1k, deit3 base patch16 384.fb in1k, tf efficientnetv2 s.in1k, ecaresnet50t.a2 in1k, resnetrs50.tf in1k, gmixer 24 224.ra3 in1k, resne-
taa50d.sw in12k ft in1k, tresnet xl.miil in1k, resnest101e.in1k, regnetx 004.pycls in1k, mnasnet small.lamb in1k, repvgg a0.rvgg in1k, resnetv2 50x1 bit.goog in21k ft in1k,
cait s24 224.fb dist in1k, regnety 004.tv2 in1k, convnext base.fb in22k ft in1k 384, convnext tiny.fb in22k ft in1k, convnext tiny.in12k ft in1k 384, eca halonext26ts.c1 in1k,
resnet18.gluon in1k, fastvit s12.apple dist in1k, deit base patch16 224.fb in1k, hrnet w18.ms aug in1k, resnet33ts.ra2 in1k, seresnext101 64x4d.gluon in1k, con-
vnext small.fb in1k, convformer s36.sail in1k 384, pit ti distilled 224.in1k, resnet50.tv2 in1k, nest small jx.goog in1k, resmlp 36 224.fb in1k, hrnet w18 small.gluon in1k,
vit base patch16 384.augreg in1k, resnet50.fb swsl ig1b ft in1k, poolformer m36.sail in1k, tf mobilenetv3 small 100.in1k, regnety 040.pycls in1k, gcresnet33ts.ra2 in1k,
resnet101s.gluon in1k, darknetaa53.c2ns in1k, poolformerv2 s12.sail in1k, resnext50 32x4d.fb ssl yfcc100m ft in1k, poolformerv2 s24.sail in1k, eca resnet33ts.ra2 in1k,
repvit m2 3.dist 300e in1k, nf resnet50.ra2 in1k, convnext pico ols.d1 in1k, caformer s36.sail in1k, regnetz 040.ra3 in1k, vit small r26 s32 224.augreg in21k ft in1k,
resnext26ts.ra2 in1k, mixnet xl.ra in1k, deit base patch16 384.fb in1k, repvit m1 0.dist 450e in1k, convmixer 1024 20 ks9 p14.in1k, regnety 064.pycls in1k,
resnet34.gluon in1k, res2net101 26w 4s.in1k, nfnet l0.ra2 in1k, resnet34d.ra2 in1k, convnextv2 nano.fcmae ft in22k in1k 384, twins pcpvt base.in1k,
resnetv2 101.a1h in1k, xcit nano 12 p8 224.fb dist in1k, xcit small 24 p8 224.fb dist in1k, resnet50.b2k in1k, deit3 small patch16 384.fb in1k, hardcore-
nas c.miil green in1k, coat lite mini.in1k, resnet152.tv2 in1k, densenetblur121d.ra in1k, hrnet w18 small v2.gluon in1k, vit base patch16 384.orig in21k ft in1k,
xcit small 12 p8 224.fb dist in1k, convformer m36.sail in1k, xcit nano 12 p16 384.fb dist in1k, resnet34.a1 in1k, convnext atto ols.a2 in1k, resnet14t.c3 in1k,
twins pcpvt large.in1k, resnest26d.gluon in1k, mobilenetv3 small 100.lamb in1k, efficientnet b3 pruned.in1k, vit small patch16 224.augreg in1k, convnext tiny.fb in1k,
resnet50d.a3 in1k, mobilevitv2 175.cvnets in22k ft in1k 384, deit3 medium patch16 224.fb in22k ft in1k, seresnext101 32x4d.gluon in1k, hardcorenas b.miil green in1k,
caformer m36.sail in22k ft in1k, ghostnetv2 100.in1k, ecaresnet50d pruned.miil in1k, caformer s36.sail in22k ft in1k 384, deit tiny patch16 224.fb in1k,
fastvit sa36.apple in1k, regnety 320.seer ft in1k, edgenext small.usi in1k, resmlp big 24 224.fb in22k ft in1k, regnety 160.lion in12k ft in1k, regnety 160.sw in12k ft in1k,
tf efficientnet b1.ap in1k, res2net50 48w 2s.in1k, eca botnext26ts 256.c1 in1k, xcit small 24 p8 224.fb in1k, crossvit 9 dagger 240.in1k, coat lite tiny.in1k,
resnetv2 101x1 bit.goog in21k ft in1k, convnext large mlp.clip laion2b augreg ft in1k, xcit nano 12 p16 224.fb dist in1k, cs3darknet focus m.c2ns in1k,
wide resnet50 2.tv2 in1k, vit base patch16 clip 224.openai ft in12k in1k, skresnet34.ra in1k, repvgg b1g4.rvgg in1k, vgg19 bn.tv in1k, repghostnet 100.in1k,
regnetv 064.ra3 in1k, mobilenetv2 100.ra in1k, convnext femto.d1 in1k, resnet26t.ra2 in1k, regnetv 040.ra3 in1k, skresnet18.ra in1k, caformer m36.sail in22k ft in1k 384,
vit base patch32 384.augreg in1k, regnetz b16.ra3 in1k, hrnet w48 ssld.paddle in1k, resnest50d 4s2x40d.in1k, cait xxs36 224.fb dist in1k, regnetx 016.tv2 in1k,
xcit small 24 p8 384.fb dist in1k, vit tiny r s16 p8 224.augreg in21k ft in1k, coat mini.in1k, xcit small 24 p16 224.fb dist in1k, caformer s36.sail in22k ft in1k,
poolformer s24.sail in1k, resmlp big 24 224.fb in1k, regnetx 120.pycls in1k, regnetz d8.ra3 in1k, resnet50d.ra2 in1k, repvit m1.dist in1k, eca nfnet l2.ra3 in1k,
resnet50d.gluon in1k, seresnext50 32x4d.racm in1k, vit small patch16 384.augreg in1k, coat tiny.in1k, xcit nano 12 p8 224.fb in1k, crossvit base 240.in1k,
resnet50d.a1 in1k, convformer s36.sail in22k ft in1k, convnextv2 large.fcmae ft in22k in1k, resnet50.tv in1k, resnet50.c1 in1k, pit xs distilled 224.in1k, efficient-
net b1.ft in1k, tf efficientnet el.in1k, hrnet w32.ms in1k, vit base patch16 224 miil.in21k ft in1k, cs3sedarknet x.c2ns in1k, dpn68b.ra in1k, tf efficientnetv2 b1.in1k,
regnety 004.pycls in1k, tf mobilenetv3 large minimal 100.in1k, resnetrs101.tf in1k, ese vovnet39b.ra in1k, mixer l16 224.goog in21k ft in1k, repghostnet 050.in1k,
repvgg b2g4.rvgg in1k, repvit m1 1.dist 450e in1k, vit base patch32 224.augreg in21k ft in1k, tf mobilenetv3 large 100.in1k, pit s 224.in1k, caformer s18.sail in22k ft in1k,
wide resnet101 2.tv in1k, fastvit t12.apple dist in1k, convmixer 768 32.in1k, vit base patch32 224.augreg in1k, efficientformerv2 s0.snap dist in1k, resnest200e.in1k,
levit conv 256.fb dist in1k, resnet18.fb ssl yfcc100m ft in1k, vgg13 bn.tv in1k, resnet152c.gluon in1k, dla169.in1k, pvt v2 b4.in1k, crossvit 15 dagger 408.in1k, con-
vnext femto ols.d1 in1k, convnext large.fb in1k, regnetx 064.pycls in1k, fastvit t8.apple in1k, seresnet152d.ra2 in1k, vgg19.tv in1k, vgg11 bn.tv in1k, dm nfnet f2.dm in1k,
seresnext101d 32x8d.ah in1k, inception next base.sail in1k 384, lambda resnet26t.c1 in1k, resnetv2 152x2 bit.goog in21k ft in1k, fastvit ma36.apple dist in1k,
regnety 006.pycls in1k, regnety 080.pycls in1k, resnet50.fb ssl yfcc100m ft in1k, tf mobilenetv3 small 075.in1k, regnetz c16.ra3 in1k, edgenext xx small.in1k,
crossvit 9 240.in1k, xcit tiny 24 p8 224.fb in1k, regnety 080.ra3 in1k, efficientvit b1.r256 in1k, tinynet d.in1k, caformer b36.sail in1k 384, pvt v2 b2.in1k, resnet26d.bt in1k,
convnext pico.d1 in1k, pit b 224.in1k, convnextv2 pico.fcmae ft in1k, fbnetv3 d.ra2 in1k, flexivit large.1200ep in1k, resnet50c.gluon in1k, regnetx 080.pycls in1k,
convnext base.fb in1k, tf efficientnet em.in1k, vit base patch16 224.augreg in1k, convit tiny.fb in1k, resnext50 32x4d.fb swsl ig1b ft in1k, dm nfnet f4.dm in1k,
resnet50.a3 in1k, convnext atto.d2 in1k, efficientnet el pruned.in1k, volo d2 384.sail in1k, resnext101 32x4d.fb ssl yfcc100m ft in1k, repvit m0 9.dist 300e in1k,
regnety 120.sw in12k ft in1k, beit base patch16 384.in22k ft in22k in1k, mobilenetv3 large 100.miil in21k ft in1k, tf efficientnet b0.aa in1k, inception next small.sail in1k,
deit base distilled patch16 224.fb in1k, lcnet 075.ra2 in1k, xcit tiny 12 p8 224.fb in1k, resnet101.gluon in1k, dpn92.mx in1k, resnet101.a1 in1k, selecsls60.in1k,
beit base patch16 224.in22k ft in22k in1k, convnextv2 tiny.fcmae ft in1k, res2net50 26w 8s.in1k, sequencer2d m.in1k, vit medium patch16 gap 256.sw in12k ft in1k, reg-
netx 008.pycls in1k, resnet50.a2 in1k, res2net101d.in1k, vit large patch16 384.augreg in21k ft in1k, pvt v2 b2 li.in1k, regnetx 006.pycls in1k, xcit tiny 24 p16 224.fb in1k,
pvt v2 b5.in1k, resnext50 32x4d.ra in1k, resnest14d.gluon in1k, caformer m36.sail in1k 384, resnet50.gluon in1k, resnet152s.gluon in1k, flexivit large.600ep in1k,
resnetv2 50x1 bit.goog distilled in1k, resmlp 24 224.fb in1k, deit3 large patch16 224.fb in1k, seresnext50 32x4d.gluon in1k, densenet121.tv in1k, resnet152.a3 in1k,
ghostnet 100.in1k, tf efficientnet b2.ap in1k, regnetx 002.pycls in1k.

17



935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

Measuring Mechanistic Interpretability at Scale Without Humans

G. Additional Results
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Fig. 20: Differences Between Layer Types are Significant. We analyze and test for statistical significances in the
differences in MIS between different layer types (see Fig. 8. The reported significance levels were computed using Conover’s
test over the per-model and per-layer-type means with Holm’s correction for multiple comparisons.
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Fig. 21: Influence of Input Resolution of MIS. We show the average MIS per model as a function of the model’s input
resolution. No trend is apparent; models with the same resolution yield different interpretability levels.
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Fig. 22: Change of Interpretability per Layer During Training. Detailed version of Fig. 11.
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Fig. 23: Comparison of the Minimum of the Per-unit MIS for Models. While the mean of the per-unit interpretability
varies in a rather narrow value range (see Fig. 5), we investigate differences in the distribution of scores. Specifically, we are
interested in the effective width of the distribution, i.e., how low does the minimal MIS per model go? To make the analysis
robust against outliers, we do not use the minimum but instead the 5th percentile. Note that this corresponds to the lower
end of the shaded area in Fig. 5. Compared to the average MIS, we see higher variability across models.
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(a) Clip ViT-B32, resblocks 3 mlp c proj, unit 573 (b) DenseNet201, block3 layer10 norm1, unit 138

(c) DenseNet201, block3 layer29 conv1, unit 39 (d) DenseNet201, block3 layer35 norm2, unit 123

Fig. 24: Visualization of Units for which MIS overestimates HIS. To showcase the shortcomings of the MIS, we visualize
four units for which the MIS predicts an interpretability that is higher than the measured HIS in Fig. 3. See Fig. 25 for the
opposite direction. For each unit, we show the 20 most (right) and 20 least (left) activating dataset exemplars.
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(a) Clip ResNet-50, layer4 1 conv2, unit 430 (b) DenseNet201, block3 layer48 conv2, unit 21

(c) DenseNet201, block3 layer48 norm1, unit 1369 (d) ViT-B32, block0 norm2, unit 358

Fig. 25: Visualization of Units for which MIS underestimates HIS. To showcase the shortcomings of the MIS, we
visualize four units for which the MIS predicts an interpretability that is lower than the measured HIS in Fig. 3. See Fig. 24
for the opposite direction. For each unit, we show the 20 most (right) and 20 least (left) activating dataset exemplars.
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(a) ResMLP-36, blocks 10 linear tokens, unit 61 (b) ResMLP-24, blocks 0 mlp channels fc1, unit 110

(c) GMixer-24, blocks 5 mlp tokens fc1, unit 166 (d) ResMLP-12, blocks 7 linear tokens, unit 127

Fig. 26: Visualization of Hard Units from Models with High Variability. For the four models with the highest variability
in MIS (see Fig. 6), we visualize one of the units with the lowest MIS each. For each unit, we show the 20 most (right) and
20 least (left) activating dataset exemplars.
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